1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283
|
/*
* Copyright (C) 2012 Google Inc. All rights reserved.
*
* Redistribution and use in source and binary forms, with or without
* modification, are permitted provided that the following conditions
* are met:
*
* 1. Redistributions of source code must retain the above copyright
* notice, this list of conditions and the following disclaimer.
* 2. Redistributions in binary form must reproduce the above copyright
* notice, this list of conditions and the following disclaimer in the
* documentation and/or other materials provided with the distribution.
* 3. Neither the name of Apple Computer, Inc. ("Apple") nor the names of
* its contributors may be used to endorse or promote products derived
* from this software without specific prior written permission.
*
* THIS SOFTWARE IS PROVIDED BY APPLE AND ITS CONTRIBUTORS "AS IS" AND ANY
* EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED
* WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE
* DISCLAIMED. IN NO EVENT SHALL APPLE OR ITS CONTRIBUTORS BE LIABLE FOR ANY
* DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES
* (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES;
* LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND
* ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT
* (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE OF
* THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
*/
#include "config.h"
#if ENABLE(WEB_AUDIO)
#include "PeriodicWave.h"
#include "FFTFrame.h"
#include "OscillatorNode.h"
#include "VectorMath.h"
#include <algorithm>
#include <wtf/OwnPtr.h>
const unsigned PeriodicWaveSize = 4096; // This must be a power of two.
const unsigned NumberOfRanges = 36; // There should be 3 * log2(PeriodicWaveSize) 1/3 octave ranges.
const float CentsPerRange = 1200 / 3; // 1/3 Octave.
namespace WebCore {
using namespace VectorMath;
PassRefPtr<PeriodicWave> PeriodicWave::create(float sampleRate, Float32Array* real, Float32Array* imag)
{
bool isGood = real && imag && real->length() == imag->length();
ASSERT(isGood);
if (isGood) {
RefPtr<PeriodicWave> waveTable = adoptRef(new PeriodicWave(sampleRate));
size_t numberOfComponents = real->length();
waveTable->createBandLimitedTables(real->data(), imag->data(), numberOfComponents);
return waveTable;
}
return 0;
}
PassRefPtr<PeriodicWave> PeriodicWave::createSine(float sampleRate)
{
RefPtr<PeriodicWave> waveTable = adoptRef(new PeriodicWave(sampleRate));
waveTable->generateBasicWaveform(OscillatorNode::SINE);
return waveTable;
}
PassRefPtr<PeriodicWave> PeriodicWave::createSquare(float sampleRate)
{
RefPtr<PeriodicWave> waveTable = adoptRef(new PeriodicWave(sampleRate));
waveTable->generateBasicWaveform(OscillatorNode::SQUARE);
return waveTable;
}
PassRefPtr<PeriodicWave> PeriodicWave::createSawtooth(float sampleRate)
{
RefPtr<PeriodicWave> waveTable = adoptRef(new PeriodicWave(sampleRate));
waveTable->generateBasicWaveform(OscillatorNode::SAWTOOTH);
return waveTable;
}
PassRefPtr<PeriodicWave> PeriodicWave::createTriangle(float sampleRate)
{
RefPtr<PeriodicWave> waveTable = adoptRef(new PeriodicWave(sampleRate));
waveTable->generateBasicWaveform(OscillatorNode::TRIANGLE);
return waveTable;
}
PeriodicWave::PeriodicWave(float sampleRate)
: m_sampleRate(sampleRate)
, m_periodicWaveSize(PeriodicWaveSize)
, m_numberOfRanges(NumberOfRanges)
, m_centsPerRange(CentsPerRange)
{
float nyquist = 0.5 * m_sampleRate;
m_lowestFundamentalFrequency = nyquist / maxNumberOfPartials();
m_rateScale = m_periodicWaveSize / m_sampleRate;
}
void PeriodicWave::waveDataForFundamentalFrequency(float fundamentalFrequency, float* &lowerWaveData, float* &higherWaveData, float& tableInterpolationFactor)
{
// Negative frequencies are allowed, in which case we alias to the positive frequency.
fundamentalFrequency = fabsf(fundamentalFrequency);
// Calculate the pitch range.
float ratio = fundamentalFrequency > 0 ? fundamentalFrequency / m_lowestFundamentalFrequency : 0.5;
float centsAboveLowestFrequency = log2f(ratio) * 1200;
// Add one to round-up to the next range just in time to truncate partials before aliasing occurs.
float pitchRange = 1 + centsAboveLowestFrequency / m_centsPerRange;
pitchRange = std::max(pitchRange, 0.0f);
pitchRange = std::min(pitchRange, static_cast<float>(m_numberOfRanges - 1));
// The words "lower" and "higher" refer to the table data having the lower and higher numbers of partials.
// It's a little confusing since the range index gets larger the more partials we cull out.
// So the lower table data will have a larger range index.
unsigned rangeIndex1 = static_cast<unsigned>(pitchRange);
unsigned rangeIndex2 = rangeIndex1 < m_numberOfRanges - 1 ? rangeIndex1 + 1 : rangeIndex1;
lowerWaveData = m_bandLimitedTables[rangeIndex2]->data();
higherWaveData = m_bandLimitedTables[rangeIndex1]->data();
// Ranges from 0 -> 1 to interpolate between lower -> higher.
tableInterpolationFactor = pitchRange - rangeIndex1;
}
unsigned PeriodicWave::maxNumberOfPartials() const
{
return m_periodicWaveSize / 2;
}
unsigned PeriodicWave::numberOfPartialsForRange(unsigned rangeIndex) const
{
// Number of cents below nyquist where we cull partials.
float centsToCull = rangeIndex * m_centsPerRange;
// A value from 0 -> 1 representing what fraction of the partials to keep.
float cullingScale = pow(2, -centsToCull / 1200);
// The very top range will have all the partials culled.
unsigned numberOfPartials = cullingScale * maxNumberOfPartials();
return numberOfPartials;
}
// Convert into time-domain wave tables.
// One table is created for each range for non-aliasing playback at different playback rates.
// Thus, higher ranges have more high-frequency partials culled out.
void PeriodicWave::createBandLimitedTables(const float* realData, const float* imagData, unsigned numberOfComponents)
{
float normalizationScale = 1;
unsigned fftSize = m_periodicWaveSize;
unsigned halfSize = fftSize / 2;
unsigned i;
numberOfComponents = std::min(numberOfComponents, halfSize);
m_bandLimitedTables.reserveCapacity(m_numberOfRanges);
for (unsigned rangeIndex = 0; rangeIndex < m_numberOfRanges; ++rangeIndex) {
// This FFTFrame is used to cull partials (represented by frequency bins).
FFTFrame frame(fftSize);
float* realP = frame.realData();
float* imagP = frame.imagData();
// Copy from loaded frequency data and scale.
float scale = fftSize;
vsmul(realData, 1, &scale, realP, 1, numberOfComponents);
vsmul(imagData, 1, &scale, imagP, 1, numberOfComponents);
// If fewer components were provided than 1/2 FFT size, then clear the remaining bins.
for (i = numberOfComponents; i < halfSize; ++i) {
realP[i] = 0;
imagP[i] = 0;
}
// Generate complex conjugate because of the way the inverse FFT is defined.
float minusOne = -1;
vsmul(imagP, 1, &minusOne, imagP, 1, halfSize);
// Find the starting bin where we should start culling.
// We need to clear out the highest frequencies to band-limit the waveform.
unsigned numberOfPartials = numberOfPartialsForRange(rangeIndex);
// Cull the aliasing partials for this pitch range.
for (i = numberOfPartials + 1; i < halfSize; ++i) {
realP[i] = 0;
imagP[i] = 0;
}
// Clear packed-nyquist if necessary.
if (numberOfPartials < halfSize)
imagP[0] = 0;
// Clear any DC-offset.
realP[0] = 0;
// Create the band-limited table.
OwnPtr<AudioFloatArray> table = adoptPtr(new AudioFloatArray(m_periodicWaveSize));
m_bandLimitedTables.append(table.release());
// Apply an inverse FFT to generate the time-domain table data.
float* data = m_bandLimitedTables[rangeIndex]->data();
frame.doInverseFFT(data);
// For the first range (which has the highest power), calculate its peak value then compute normalization scale.
if (!rangeIndex) {
float maxValue;
vmaxmgv(data, 1, &maxValue, m_periodicWaveSize);
if (maxValue)
normalizationScale = 1.0f / maxValue;
}
// Apply normalization scale.
vsmul(data, 1, &normalizationScale, data, 1, m_periodicWaveSize);
}
}
void PeriodicWave::generateBasicWaveform(int shape)
{
unsigned fftSize = periodicWaveSize();
unsigned halfSize = fftSize / 2;
AudioFloatArray real(halfSize);
AudioFloatArray imag(halfSize);
float* realP = real.data();
float* imagP = imag.data();
// Clear DC and Nyquist.
realP[0] = 0;
imagP[0] = 0;
for (unsigned n = 1; n < halfSize; ++n) {
float omega = 2 * piFloat * n;
float invOmega = 1 / omega;
// Fourier coefficients according to standard definition.
float a; // Coefficient for cos().
float b; // Coefficient for sin().
// Calculate Fourier coefficients depending on the shape.
// Note that the overall scaling (magnitude) of the waveforms is normalized in createBandLimitedTables().
switch (shape) {
case OscillatorNode::SINE:
// Standard sine wave function.
a = 0;
b = (n == 1) ? 1 : 0;
break;
case OscillatorNode::SQUARE:
// Square-shaped waveform with the first half its maximum value and the second half its minimum value.
a = 0;
b = invOmega * ((n & 1) ? 2 : 0);
break;
case OscillatorNode::SAWTOOTH:
// Sawtooth-shaped waveform with the first half ramping from zero to maximum and the second half from minimum to zero.
a = 0;
b = -invOmega * cos(0.5 * omega);
break;
case OscillatorNode::TRIANGLE:
// Triangle-shaped waveform going from its maximum value to its minimum value then back to the maximum value.
a = (4 - 4 * cos(0.5 * omega)) / (n * n * piFloat * piFloat);
b = 0;
break;
default:
ASSERT_NOT_REACHED();
a = 0;
b = 0;
break;
}
realP[n] = a;
imagP[n] = b;
}
createBandLimitedTables(realP, imagP, halfSize);
}
} // namespace WebCore
#endif // ENABLE(WEB_AUDIO)
|