1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208
|
/*
* Copyright (C) 2011, Google Inc. All rights reserved.
*
* Redistribution and use in source and binary forms, with or without
* modification, are permitted provided that the following conditions
* are met:
* 1. Redistributions of source code must retain the above copyright
* notice, this list of conditions and the following disclaimer.
* 2. Redistributions in binary form must reproduce the above copyright
* notice, this list of conditions and the following disclaimer in the
* documentation and/or other materials provided with the distribution.
*
* THIS SOFTWARE IS PROVIDED BY APPLE INC. AND ITS CONTRIBUTORS ``AS IS'' AND ANY
* EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED
* WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE
* DISCLAIMED. IN NO EVENT SHALL APPLE INC. OR ITS CONTRIBUTORS BE LIABLE FOR ANY
* DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES
* (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES;
* LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON
* ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT
* (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE OF THIS
* SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
*/
#include "config.h"
#if ENABLE(WEB_AUDIO)
#include "WaveShaperDSPKernel.h"
#include "WaveShaperProcessor.h"
#include <algorithm>
#include <wtf/MainThread.h>
#include <wtf/Threading.h>
const unsigned RenderingQuantum = 128;
using namespace std;
namespace WebCore {
WaveShaperDSPKernel::WaveShaperDSPKernel(WaveShaperProcessor* processor)
: AudioDSPKernel(processor)
{
if (processor->oversample() != WaveShaperProcessor::OverSampleNone)
lazyInitializeOversampling();
}
void WaveShaperDSPKernel::lazyInitializeOversampling()
{
ASSERT(isMainThread());
if (!m_tempBuffer) {
m_tempBuffer = adoptPtr(new AudioFloatArray(RenderingQuantum * 2));
m_tempBuffer2 = adoptPtr(new AudioFloatArray(RenderingQuantum * 4));
m_upSampler = adoptPtr(new UpSampler(RenderingQuantum));
m_downSampler = adoptPtr(new DownSampler(RenderingQuantum * 2));
m_upSampler2 = adoptPtr(new UpSampler(RenderingQuantum * 2));
m_downSampler2 = adoptPtr(new DownSampler(RenderingQuantum * 4));
}
}
void WaveShaperDSPKernel::process(const float* source, float* destination, size_t framesToProcess)
{
switch (waveShaperProcessor()->oversample()) {
case WaveShaperProcessor::OverSampleNone:
processCurve(source, destination, framesToProcess);
break;
case WaveShaperProcessor::OverSample2x:
processCurve2x(source, destination, framesToProcess);
break;
case WaveShaperProcessor::OverSample4x:
processCurve4x(source, destination, framesToProcess);
break;
default:
ASSERT_NOT_REACHED();
}
}
void WaveShaperDSPKernel::processCurve(const float* source, float* destination, size_t framesToProcess)
{
ASSERT(source && destination && waveShaperProcessor());
Float32Array* curve = waveShaperProcessor()->curve();
if (!curve) {
// Act as "straight wire" pass-through if no curve is set.
memcpy(destination, source, sizeof(float) * framesToProcess);
return;
}
float* curveData = curve->data();
int curveLength = curve->length();
ASSERT(curveData);
if (!curveData || !curveLength) {
memcpy(destination, source, sizeof(float) * framesToProcess);
return;
}
// Apply waveshaping curve.
for (unsigned i = 0; i < framesToProcess; ++i) {
const float input = source[i];
// Calculate a virtual index based on input -1 -> +1 with 0 being at the center of the curve data.
// Then linearly interpolate between the two points in the curve.
double virtualIndex = 0.5 * (input + 1) * curveLength;
int index1 = static_cast<int>(virtualIndex);
int index2 = index1 + 1;
double interpolationFactor = virtualIndex - index1;
// Clip index to the input range of the curve.
// This takes care of input outside of nominal range -1 -> +1
index1 = max(index1, 0);
index1 = min(index1, curveLength - 1);
index2 = max(index2, 0);
index2 = min(index2, curveLength - 1);
double value1 = curveData[index1];
double value2 = curveData[index2];
double output = (1.0 - interpolationFactor) * value1 + interpolationFactor * value2;
destination[i] = output;
}
}
void WaveShaperDSPKernel::processCurve2x(const float* source, float* destination, size_t framesToProcess)
{
bool isSafe = framesToProcess == RenderingQuantum;
ASSERT(isSafe);
if (!isSafe)
return;
float* tempP = m_tempBuffer->data();
m_upSampler->process(source, tempP, framesToProcess);
// Process at 2x up-sampled rate.
processCurve(tempP, tempP, framesToProcess * 2);
m_downSampler->process(tempP, destination, framesToProcess * 2);
}
void WaveShaperDSPKernel::processCurve4x(const float* source, float* destination, size_t framesToProcess)
{
bool isSafe = framesToProcess == RenderingQuantum;
ASSERT(isSafe);
if (!isSafe)
return;
float* tempP = m_tempBuffer->data();
float* tempP2 = m_tempBuffer2->data();
m_upSampler->process(source, tempP, framesToProcess);
m_upSampler2->process(tempP, tempP2, framesToProcess * 2);
// Process at 4x up-sampled rate.
processCurve(tempP2, tempP2, framesToProcess * 4);
m_downSampler2->process(tempP2, tempP, framesToProcess * 4);
m_downSampler->process(tempP, destination, framesToProcess * 2);
}
void WaveShaperDSPKernel::reset()
{
if (m_upSampler) {
m_upSampler->reset();
m_downSampler->reset();
m_upSampler2->reset();
m_downSampler2->reset();
}
}
double WaveShaperDSPKernel::latencyTime() const
{
size_t latencyFrames = 0;
WaveShaperDSPKernel* kernel = const_cast<WaveShaperDSPKernel*>(this);
switch (kernel->waveShaperProcessor()->oversample()) {
case WaveShaperProcessor::OverSampleNone:
break;
case WaveShaperProcessor::OverSample2x:
latencyFrames += m_upSampler->latencyFrames();
latencyFrames += m_downSampler->latencyFrames();
break;
case WaveShaperProcessor::OverSample4x:
{
// Account for first stage upsampling.
latencyFrames += m_upSampler->latencyFrames();
latencyFrames += m_downSampler->latencyFrames();
// Account for second stage upsampling.
// and divide by 2 to get back down to the regular sample-rate.
size_t latencyFrames2 = (m_upSampler2->latencyFrames() + m_downSampler2->latencyFrames()) / 2;
latencyFrames += latencyFrames2;
break;
}
default:
ASSERT_NOT_REACHED();
}
return static_cast<double>(latencyFrames) / sampleRate();
}
} // namespace WebCore
#endif // ENABLE(WEB_AUDIO)
|