1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422
|
/*
* Copyright (C) 2006, 2008 Apple Inc. All rights reserved.
* Copyright (C) 2009 Google Inc. All rights reserved.
*
* Redistribution and use in source and binary forms, with or without
* modification, are permitted provided that the following conditions
* are met:
* 1. Redistributions of source code must retain the above copyright
* notice, this list of conditions and the following disclaimer.
* 2. Redistributions in binary form must reproduce the above copyright
* notice, this list of conditions and the following disclaimer in the
* documentation and/or other materials provided with the distribution.
*
* THIS SOFTWARE IS PROVIDED BY APPLE COMPUTER, INC. ``AS IS'' AND ANY
* EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
* IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR
* PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL APPLE COMPUTER, INC. OR
* CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL,
* EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO,
* PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR
* PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY
* OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT
* (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE
* OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
*/
#include "config.h"
#include "Timer.h"
#include "SharedTimer.h"
#include "ThreadGlobalData.h"
#include "ThreadTimers.h"
#include <limits.h>
#include <limits>
#include <math.h>
#include <wtf/CurrentTime.h>
#include <wtf/HashSet.h>
#include <wtf/Vector.h>
using namespace std;
namespace WebCore {
class TimerHeapReference;
// Timers are stored in a heap data structure, used to implement a priority queue.
// This allows us to efficiently determine which timer needs to fire the soonest.
// Then we set a single shared system timer to fire at that time.
//
// When a timer's "next fire time" changes, we need to move it around in the priority queue.
static Vector<TimerBase*>& threadGlobalTimerHeap()
{
return threadGlobalData().threadTimers().timerHeap();
}
// ----------------
class TimerHeapPointer {
public:
TimerHeapPointer(TimerBase** pointer) : m_pointer(pointer) { }
TimerHeapReference operator*() const;
TimerBase* operator->() const { return *m_pointer; }
private:
TimerBase** m_pointer;
};
class TimerHeapReference {
public:
TimerHeapReference(TimerBase*& reference) : m_reference(reference) { }
operator TimerBase*() const { return m_reference; }
TimerHeapPointer operator&() const { return &m_reference; }
TimerHeapReference& operator=(TimerBase*);
TimerHeapReference& operator=(TimerHeapReference);
private:
TimerBase*& m_reference;
};
inline TimerHeapReference TimerHeapPointer::operator*() const
{
return *m_pointer;
}
inline TimerHeapReference& TimerHeapReference::operator=(TimerBase* timer)
{
m_reference = timer;
Vector<TimerBase*>& heap = timer->timerHeap();
if (&m_reference >= heap.data() && &m_reference < heap.data() + heap.size())
timer->m_heapIndex = &m_reference - heap.data();
return *this;
}
inline TimerHeapReference& TimerHeapReference::operator=(TimerHeapReference b)
{
TimerBase* timer = b;
return *this = timer;
}
inline void swap(TimerHeapReference a, TimerHeapReference b)
{
TimerBase* timerA = a;
TimerBase* timerB = b;
// Invoke the assignment operator, since that takes care of updating m_heapIndex.
a = timerB;
b = timerA;
}
// ----------------
// Class to represent iterators in the heap when calling the standard library heap algorithms.
// Uses a custom pointer and reference type that update indices for pointers in the heap.
class TimerHeapIterator : public iterator<random_access_iterator_tag, TimerBase*, ptrdiff_t, TimerHeapPointer, TimerHeapReference> {
public:
explicit TimerHeapIterator(TimerBase** pointer) : m_pointer(pointer) { checkConsistency(); }
TimerHeapIterator& operator++() { checkConsistency(); ++m_pointer; checkConsistency(); return *this; }
TimerHeapIterator operator++(int) { checkConsistency(1); return TimerHeapIterator(m_pointer++); }
TimerHeapIterator& operator--() { checkConsistency(); --m_pointer; checkConsistency(); return *this; }
TimerHeapIterator operator--(int) { checkConsistency(-1); return TimerHeapIterator(m_pointer--); }
TimerHeapIterator& operator+=(ptrdiff_t i) { checkConsistency(); m_pointer += i; checkConsistency(); return *this; }
TimerHeapIterator& operator-=(ptrdiff_t i) { checkConsistency(); m_pointer -= i; checkConsistency(); return *this; }
TimerHeapReference operator*() const { return TimerHeapReference(*m_pointer); }
TimerHeapReference operator[](ptrdiff_t i) const { return TimerHeapReference(m_pointer[i]); }
TimerBase* operator->() const { return *m_pointer; }
private:
void checkConsistency(ptrdiff_t offset = 0) const
{
ASSERT(m_pointer >= threadGlobalTimerHeap().data());
ASSERT(m_pointer <= threadGlobalTimerHeap().data() + threadGlobalTimerHeap().size());
ASSERT_UNUSED(offset, m_pointer + offset >= threadGlobalTimerHeap().data());
ASSERT_UNUSED(offset, m_pointer + offset <= threadGlobalTimerHeap().data() + threadGlobalTimerHeap().size());
}
friend bool operator==(TimerHeapIterator, TimerHeapIterator);
friend bool operator!=(TimerHeapIterator, TimerHeapIterator);
friend bool operator<(TimerHeapIterator, TimerHeapIterator);
friend bool operator>(TimerHeapIterator, TimerHeapIterator);
friend bool operator<=(TimerHeapIterator, TimerHeapIterator);
friend bool operator>=(TimerHeapIterator, TimerHeapIterator);
friend TimerHeapIterator operator+(TimerHeapIterator, size_t);
friend TimerHeapIterator operator+(size_t, TimerHeapIterator);
friend TimerHeapIterator operator-(TimerHeapIterator, size_t);
friend ptrdiff_t operator-(TimerHeapIterator, TimerHeapIterator);
TimerBase** m_pointer;
};
inline bool operator==(TimerHeapIterator a, TimerHeapIterator b) { return a.m_pointer == b.m_pointer; }
inline bool operator!=(TimerHeapIterator a, TimerHeapIterator b) { return a.m_pointer != b.m_pointer; }
inline bool operator<(TimerHeapIterator a, TimerHeapIterator b) { return a.m_pointer < b.m_pointer; }
inline bool operator>(TimerHeapIterator a, TimerHeapIterator b) { return a.m_pointer > b.m_pointer; }
inline bool operator<=(TimerHeapIterator a, TimerHeapIterator b) { return a.m_pointer <= b.m_pointer; }
inline bool operator>=(TimerHeapIterator a, TimerHeapIterator b) { return a.m_pointer >= b.m_pointer; }
inline TimerHeapIterator operator+(TimerHeapIterator a, size_t b) { return TimerHeapIterator(a.m_pointer + b); }
inline TimerHeapIterator operator+(size_t a, TimerHeapIterator b) { return TimerHeapIterator(a + b.m_pointer); }
inline TimerHeapIterator operator-(TimerHeapIterator a, size_t b) { return TimerHeapIterator(a.m_pointer - b); }
inline ptrdiff_t operator-(TimerHeapIterator a, TimerHeapIterator b) { return a.m_pointer - b.m_pointer; }
// ----------------
class TimerHeapLessThanFunction {
public:
bool operator()(const TimerBase*, const TimerBase*) const;
};
inline bool TimerHeapLessThanFunction::operator()(const TimerBase* a, const TimerBase* b) const
{
// The comparisons below are "backwards" because the heap puts the largest
// element first and we want the lowest time to be the first one in the heap.
double aFireTime = a->m_nextFireTime;
double bFireTime = b->m_nextFireTime;
if (bFireTime != aFireTime)
return bFireTime < aFireTime;
// We need to look at the difference of the insertion orders instead of comparing the two
// outright in case of overflow.
unsigned difference = a->m_heapInsertionOrder - b->m_heapInsertionOrder;
return difference < numeric_limits<unsigned>::max() / 2;
}
// ----------------
TimerBase::TimerBase()
: m_nextFireTime(0)
, m_unalignedNextFireTime(0)
, m_repeatInterval(0)
, m_heapIndex(-1)
, m_cachedThreadGlobalTimerHeap(0)
#ifndef NDEBUG
, m_thread(currentThread())
, m_wasDeleted(false)
#endif
{
}
TimerBase::~TimerBase()
{
stop();
ASSERT(!inHeap());
#ifndef NDEBUG
m_wasDeleted = true;
#endif
}
void TimerBase::start(double nextFireInterval, double repeatInterval)
{
ASSERT(m_thread == currentThread());
m_repeatInterval = repeatInterval;
setNextFireTime(monotonicallyIncreasingTime() + nextFireInterval);
}
void TimerBase::stop()
{
ASSERT(m_thread == currentThread());
m_repeatInterval = 0;
setNextFireTime(0);
ASSERT(m_nextFireTime == 0);
ASSERT(m_repeatInterval == 0);
ASSERT(!inHeap());
}
double TimerBase::nextFireInterval() const
{
ASSERT(isActive());
double current = monotonicallyIncreasingTime();
if (m_nextFireTime < current)
return 0;
return m_nextFireTime - current;
}
inline void TimerBase::checkHeapIndex() const
{
ASSERT(timerHeap() == threadGlobalTimerHeap());
ASSERT(!timerHeap().isEmpty());
ASSERT(m_heapIndex >= 0);
ASSERT(m_heapIndex < static_cast<int>(timerHeap().size()));
ASSERT(timerHeap()[m_heapIndex] == this);
}
inline void TimerBase::checkConsistency() const
{
// Timers should be in the heap if and only if they have a non-zero next fire time.
ASSERT(inHeap() == (m_nextFireTime != 0));
if (inHeap())
checkHeapIndex();
}
void TimerBase::heapDecreaseKey()
{
ASSERT(m_nextFireTime != 0);
checkHeapIndex();
TimerBase** heapData = timerHeap().data();
push_heap(TimerHeapIterator(heapData), TimerHeapIterator(heapData + m_heapIndex + 1), TimerHeapLessThanFunction());
checkHeapIndex();
}
inline void TimerBase::heapDelete()
{
ASSERT(m_nextFireTime == 0);
heapPop();
timerHeap().removeLast();
m_heapIndex = -1;
}
void TimerBase::heapDeleteMin()
{
ASSERT(m_nextFireTime == 0);
heapPopMin();
timerHeap().removeLast();
m_heapIndex = -1;
}
inline void TimerBase::heapIncreaseKey()
{
ASSERT(m_nextFireTime != 0);
heapPop();
heapDecreaseKey();
}
inline void TimerBase::heapInsert()
{
ASSERT(!inHeap());
timerHeap().append(this);
m_heapIndex = timerHeap().size() - 1;
heapDecreaseKey();
}
inline void TimerBase::heapPop()
{
// Temporarily force this timer to have the minimum key so we can pop it.
double fireTime = m_nextFireTime;
m_nextFireTime = -numeric_limits<double>::infinity();
heapDecreaseKey();
heapPopMin();
m_nextFireTime = fireTime;
}
void TimerBase::heapPopMin()
{
ASSERT(this == timerHeap().first());
checkHeapIndex();
Vector<TimerBase*>& heap = timerHeap();
TimerBase** heapData = heap.data();
pop_heap(TimerHeapIterator(heapData), TimerHeapIterator(heapData + heap.size()), TimerHeapLessThanFunction());
checkHeapIndex();
ASSERT(this == timerHeap().last());
}
static inline bool parentHeapPropertyHolds(const TimerBase* current, const Vector<TimerBase*>& heap, unsigned currentIndex)
{
if (!currentIndex)
return true;
unsigned parentIndex = (currentIndex - 1) / 2;
TimerHeapLessThanFunction compareHeapPosition;
return compareHeapPosition(current, heap[parentIndex]);
}
static inline bool childHeapPropertyHolds(const TimerBase* current, const Vector<TimerBase*>& heap, unsigned childIndex)
{
if (childIndex >= heap.size())
return true;
TimerHeapLessThanFunction compareHeapPosition;
return compareHeapPosition(heap[childIndex], current);
}
bool TimerBase::hasValidHeapPosition() const
{
ASSERT(m_nextFireTime);
if (!inHeap())
return false;
// Check if the heap property still holds with the new fire time. If it does we don't need to do anything.
// This assumes that the STL heap is a standard binary heap. In an unlikely event it is not, the assertions
// in updateHeapIfNeeded() will get hit.
const Vector<TimerBase*>& heap = timerHeap();
if (!parentHeapPropertyHolds(this, heap, m_heapIndex))
return false;
unsigned childIndex1 = 2 * m_heapIndex + 1;
unsigned childIndex2 = childIndex1 + 1;
return childHeapPropertyHolds(this, heap, childIndex1) && childHeapPropertyHolds(this, heap, childIndex2);
}
void TimerBase::updateHeapIfNeeded(double oldTime)
{
if (m_nextFireTime && hasValidHeapPosition())
return;
#ifndef NDEBUG
int oldHeapIndex = m_heapIndex;
#endif
if (!oldTime)
heapInsert();
else if (!m_nextFireTime)
heapDelete();
else if (m_nextFireTime < oldTime)
heapDecreaseKey();
else
heapIncreaseKey();
ASSERT(m_heapIndex != oldHeapIndex);
ASSERT(!inHeap() || hasValidHeapPosition());
}
void TimerBase::setNextFireTime(double newUnalignedTime)
{
ASSERT(m_thread == currentThread());
ASSERT(!m_wasDeleted);
if (m_unalignedNextFireTime != newUnalignedTime)
m_unalignedNextFireTime = newUnalignedTime;
// Accessing thread global data is slow. Cache the heap pointer.
if (!m_cachedThreadGlobalTimerHeap)
m_cachedThreadGlobalTimerHeap = &threadGlobalTimerHeap();
// Keep heap valid while changing the next-fire time.
double oldTime = m_nextFireTime;
double newTime = alignedFireTime(newUnalignedTime);
if (oldTime != newTime) {
m_nextFireTime = newTime;
static unsigned currentHeapInsertionOrder;
m_heapInsertionOrder = currentHeapInsertionOrder++;
bool wasFirstTimerInHeap = m_heapIndex == 0;
updateHeapIfNeeded(oldTime);
bool isFirstTimerInHeap = m_heapIndex == 0;
if (wasFirstTimerInHeap || isFirstTimerInHeap)
threadGlobalData().threadTimers().updateSharedTimer();
}
checkConsistency();
}
void TimerBase::fireTimersInNestedEventLoop()
{
// Redirect to ThreadTimers.
threadGlobalData().threadTimers().fireTimersInNestedEventLoop();
}
void TimerBase::didChangeAlignmentInterval()
{
setNextFireTime(m_unalignedNextFireTime);
}
double TimerBase::nextUnalignedFireInterval() const
{
ASSERT(isActive());
return max(m_unalignedNextFireTime - monotonicallyIncreasingTime(), 0.0);
}
} // namespace WebCore
|