1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243
|
/*
* Copyright (C) 2010 Google Inc. All rights reserved.
*
* Redistribution and use in source and binary forms, with or without
* modification, are permitted provided that the following conditions
* are met:
*
* 1. Redistributions of source code must retain the above copyright
* notice, this list of conditions and the following disclaimer.
* 2. Redistributions in binary form must reproduce the above copyright
* notice, this list of conditions and the following disclaimer in the
* documentation and/or other materials provided with the distribution.
* 3. Neither the name of Apple Computer, Inc. ("Apple") nor the names of
* its contributors may be used to endorse or promote products derived
* from this software without specific prior written permission.
*
* THIS SOFTWARE IS PROVIDED BY APPLE AND ITS CONTRIBUTORS "AS IS" AND ANY
* EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED
* WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE
* DISCLAIMED. IN NO EVENT SHALL APPLE OR ITS CONTRIBUTORS BE LIABLE FOR ANY
* DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES
* (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES;
* LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND
* ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT
* (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE OF
* THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
*/
#include "config.h"
#if ENABLE(WEB_AUDIO)
#include "Reverb.h"
#include "AudioBus.h"
#include "AudioFileReader.h"
#include "ReverbConvolver.h"
#include "VectorMath.h"
#include <math.h>
#include <wtf/MathExtras.h>
#include <wtf/OwnPtr.h>
#include <wtf/PassOwnPtr.h>
#if OS(DARWIN)
using namespace std;
#endif
namespace WebCore {
using namespace VectorMath;
// Empirical gain calibration tested across many impulse responses to ensure perceived volume is same as dry (unprocessed) signal
const float GainCalibration = -58;
const float GainCalibrationSampleRate = 44100;
// A minimum power value to when normalizing a silent (or very quiet) impulse response
const float MinPower = 0.000125f;
static float calculateNormalizationScale(AudioBus* response)
{
// Normalize by RMS power
size_t numberOfChannels = response->numberOfChannels();
size_t length = response->length();
float power = 0;
for (size_t i = 0; i < numberOfChannels; ++i) {
float channelPower = 0;
vsvesq(response->channel(i)->data(), 1, &channelPower, length);
power += channelPower;
}
power = sqrt(power / (numberOfChannels * length));
// Protect against accidental overload
if (std::isinf(power) || std::isnan(power) || power < MinPower)
power = MinPower;
float scale = 1 / power;
scale *= powf(10, GainCalibration * 0.05f); // calibrate to make perceived volume same as unprocessed
// Scale depends on sample-rate.
if (response->sampleRate())
scale *= GainCalibrationSampleRate / response->sampleRate();
// True-stereo compensation
if (response->numberOfChannels() == 4)
scale *= 0.5f;
return scale;
}
Reverb::Reverb(AudioBus* impulseResponse, size_t renderSliceSize, size_t maxFFTSize, size_t numberOfChannels, bool useBackgroundThreads, bool normalize)
{
float scale = 1;
if (normalize) {
scale = calculateNormalizationScale(impulseResponse);
if (scale)
impulseResponse->scale(scale);
}
initialize(impulseResponse, renderSliceSize, maxFFTSize, numberOfChannels, useBackgroundThreads);
// Undo scaling since this shouldn't be a destructive operation on impulseResponse.
// FIXME: What about roundoff? Perhaps consider making a temporary scaled copy
// instead of scaling and unscaling in place.
if (normalize && scale)
impulseResponse->scale(1 / scale);
}
void Reverb::initialize(AudioBus* impulseResponseBuffer, size_t renderSliceSize, size_t maxFFTSize, size_t numberOfChannels, bool useBackgroundThreads)
{
m_impulseResponseLength = impulseResponseBuffer->length();
// The reverb can handle a mono impulse response and still do stereo processing
size_t numResponseChannels = impulseResponseBuffer->numberOfChannels();
m_convolvers.reserveCapacity(numberOfChannels);
int convolverRenderPhase = 0;
for (size_t i = 0; i < numResponseChannels; ++i) {
AudioChannel* channel = impulseResponseBuffer->channel(i);
OwnPtr<ReverbConvolver> convolver = adoptPtr(new ReverbConvolver(channel, renderSliceSize, maxFFTSize, convolverRenderPhase, useBackgroundThreads));
m_convolvers.append(convolver.release());
convolverRenderPhase += renderSliceSize;
}
// For "True" stereo processing we allocate a temporary buffer to avoid repeatedly allocating it in the process() method.
// It can be bad to allocate memory in a real-time thread.
if (numResponseChannels == 4)
m_tempBuffer = AudioBus::create(2, MaxFrameSize);
}
void Reverb::process(const AudioBus* sourceBus, AudioBus* destinationBus, size_t framesToProcess)
{
// Do a fairly comprehensive sanity check.
// If these conditions are satisfied, all of the source and destination pointers will be valid for the various matrixing cases.
bool isSafeToProcess = sourceBus && destinationBus && sourceBus->numberOfChannels() > 0 && destinationBus->numberOfChannels() > 0
&& framesToProcess <= MaxFrameSize && framesToProcess <= sourceBus->length() && framesToProcess <= destinationBus->length();
ASSERT(isSafeToProcess);
if (!isSafeToProcess)
return;
// For now only handle mono or stereo output
if (destinationBus->numberOfChannels() > 2) {
destinationBus->zero();
return;
}
AudioChannel* destinationChannelL = destinationBus->channel(0);
const AudioChannel* sourceChannelL = sourceBus->channel(0);
// Handle input -> output matrixing...
size_t numInputChannels = sourceBus->numberOfChannels();
size_t numOutputChannels = destinationBus->numberOfChannels();
size_t numReverbChannels = m_convolvers.size();
if (numInputChannels == 2 && numReverbChannels == 2 && numOutputChannels == 2) {
// 2 -> 2 -> 2
const AudioChannel* sourceChannelR = sourceBus->channel(1);
AudioChannel* destinationChannelR = destinationBus->channel(1);
m_convolvers[0]->process(sourceChannelL, destinationChannelL, framesToProcess);
m_convolvers[1]->process(sourceChannelR, destinationChannelR, framesToProcess);
} else if (numInputChannels == 1 && numOutputChannels == 2 && numReverbChannels == 2) {
// 1 -> 2 -> 2
for (int i = 0; i < 2; ++i) {
AudioChannel* destinationChannel = destinationBus->channel(i);
m_convolvers[i]->process(sourceChannelL, destinationChannel, framesToProcess);
}
} else if (numInputChannels == 1 && numReverbChannels == 1 && numOutputChannels == 2) {
// 1 -> 1 -> 2
m_convolvers[0]->process(sourceChannelL, destinationChannelL, framesToProcess);
// simply copy L -> R
AudioChannel* destinationChannelR = destinationBus->channel(1);
bool isCopySafe = destinationChannelL->data() && destinationChannelR->data() && destinationChannelL->length() >= framesToProcess && destinationChannelR->length() >= framesToProcess;
ASSERT(isCopySafe);
if (!isCopySafe)
return;
memcpy(destinationChannelR->mutableData(), destinationChannelL->data(), sizeof(float) * framesToProcess);
} else if (numInputChannels == 1 && numReverbChannels == 1 && numOutputChannels == 1) {
// 1 -> 1 -> 1
m_convolvers[0]->process(sourceChannelL, destinationChannelL, framesToProcess);
} else if (numInputChannels == 2 && numReverbChannels == 4 && numOutputChannels == 2) {
// 2 -> 4 -> 2 ("True" stereo)
const AudioChannel* sourceChannelR = sourceBus->channel(1);
AudioChannel* destinationChannelR = destinationBus->channel(1);
AudioChannel* tempChannelL = m_tempBuffer->channel(0);
AudioChannel* tempChannelR = m_tempBuffer->channel(1);
// Process left virtual source
m_convolvers[0]->process(sourceChannelL, destinationChannelL, framesToProcess);
m_convolvers[1]->process(sourceChannelL, destinationChannelR, framesToProcess);
// Process right virtual source
m_convolvers[2]->process(sourceChannelR, tempChannelL, framesToProcess);
m_convolvers[3]->process(sourceChannelR, tempChannelR, framesToProcess);
destinationBus->sumFrom(*m_tempBuffer);
} else if (numInputChannels == 1 && numReverbChannels == 4 && numOutputChannels == 2) {
// 1 -> 4 -> 2 (Processing mono with "True" stereo impulse response)
// This is an inefficient use of a four-channel impulse response, but we should handle the case.
AudioChannel* destinationChannelR = destinationBus->channel(1);
AudioChannel* tempChannelL = m_tempBuffer->channel(0);
AudioChannel* tempChannelR = m_tempBuffer->channel(1);
// Process left virtual source
m_convolvers[0]->process(sourceChannelL, destinationChannelL, framesToProcess);
m_convolvers[1]->process(sourceChannelL, destinationChannelR, framesToProcess);
// Process right virtual source
m_convolvers[2]->process(sourceChannelL, tempChannelL, framesToProcess);
m_convolvers[3]->process(sourceChannelL, tempChannelR, framesToProcess);
destinationBus->sumFrom(*m_tempBuffer);
} else {
// Handle gracefully any unexpected / unsupported matrixing
// FIXME: add code for 5.1 support...
destinationBus->zero();
}
}
void Reverb::reset()
{
for (size_t i = 0; i < m_convolvers.size(); ++i)
m_convolvers[i]->reset();
}
size_t Reverb::latencyFrames() const
{
return !m_convolvers.isEmpty() ? m_convolvers.first()->latencyFrames() : 0;
}
} // namespace WebCore
#endif // ENABLE(WEB_AUDIO)
|