1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234
|
/*
* Copyright (C) 2012 Adobe Systems Incorporated. All rights reserved.
*
* Redistribution and use in source and binary forms, with or without
* modification, are permitted provided that the following conditions
* are met:
*
* 1. Redistributions of source code must retain the above
* copyright notice, this list of conditions and the following
* disclaimer.
* 2. Redistributions in binary form must reproduce the above
* copyright notice, this list of conditions and the following
* disclaimer in the documentation and/or other materials
* provided with the distribution.
*
* THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS
* "AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT
* LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS
* FOR A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE
* COPYRIGHT HOLDER OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT,
* INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES
* (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR
* SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
* HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT,
* STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE)
* ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED
* OF THE POSSIBILITY OF SUCH DAMAGE.
*/
#include "config.h"
#include "FloatPolygon.h"
#include <wtf/MathExtras.h>
namespace WebCore {
static inline float determinant(const FloatSize& a, const FloatSize& b)
{
return a.width() * b.height() - a.height() * b.width();
}
static inline bool areCollinearPoints(const FloatPoint& p0, const FloatPoint& p1, const FloatPoint& p2)
{
return !determinant(p1 - p0, p2 - p0);
}
static inline bool areCoincidentPoints(const FloatPoint& p0, const FloatPoint& p1)
{
return p0.x() == p1.x() && p0.y() == p1.y();
}
static inline bool isPointOnLineSegment(const FloatPoint& vertex1, const FloatPoint& vertex2, const FloatPoint& point)
{
return point.x() >= std::min(vertex1.x(), vertex2.x())
&& point.x() <= std::max(vertex1.x(), vertex2.x())
&& areCollinearPoints(vertex1, vertex2, point);
}
static inline unsigned nextVertexIndex(unsigned vertexIndex, unsigned nVertices, bool clockwise)
{
return ((clockwise) ? vertexIndex + 1 : vertexIndex - 1 + nVertices) % nVertices;
}
static unsigned findNextEdgeVertexIndex(const FloatPolygon& polygon, unsigned vertexIndex1, bool clockwise)
{
unsigned nVertices = polygon.numberOfVertices();
unsigned vertexIndex2 = nextVertexIndex(vertexIndex1, nVertices, clockwise);
while (vertexIndex2 && areCoincidentPoints(polygon.vertexAt(vertexIndex1), polygon.vertexAt(vertexIndex2)))
vertexIndex2 = nextVertexIndex(vertexIndex2, nVertices, clockwise);
while (vertexIndex2) {
unsigned vertexIndex3 = nextVertexIndex(vertexIndex2, nVertices, clockwise);
if (!areCollinearPoints(polygon.vertexAt(vertexIndex1), polygon.vertexAt(vertexIndex2), polygon.vertexAt(vertexIndex3)))
break;
vertexIndex2 = vertexIndex3;
}
return vertexIndex2;
}
FloatPolygon::FloatPolygon(PassOwnPtr<Vector<FloatPoint> > vertices, WindRule fillRule)
: m_vertices(vertices)
, m_fillRule(fillRule)
{
unsigned nVertices = numberOfVertices();
m_edges.resize(nVertices);
m_empty = nVertices < 3;
if (nVertices)
m_boundingBox.setLocation(vertexAt(0));
if (m_empty)
return;
unsigned minVertexIndex = 0;
for (unsigned i = 1; i < nVertices; ++i) {
const FloatPoint& vertex = vertexAt(i);
if (vertex.y() < vertexAt(minVertexIndex).y() || (vertex.y() == vertexAt(minVertexIndex).y() && vertex.x() < vertexAt(minVertexIndex).x()))
minVertexIndex = i;
}
FloatPoint nextVertex = vertexAt((minVertexIndex + 1) % nVertices);
FloatPoint prevVertex = vertexAt((minVertexIndex + nVertices - 1) % nVertices);
bool clockwise = determinant(vertexAt(minVertexIndex) - prevVertex, nextVertex - prevVertex) > 0;
unsigned edgeIndex = 0;
unsigned vertexIndex1 = 0;
do {
m_boundingBox.extend(vertexAt(vertexIndex1));
unsigned vertexIndex2 = findNextEdgeVertexIndex(*this, vertexIndex1, clockwise);
m_edges[edgeIndex].m_polygon = this;
m_edges[edgeIndex].m_vertexIndex1 = vertexIndex1;
m_edges[edgeIndex].m_vertexIndex2 = vertexIndex2;
m_edges[edgeIndex].m_edgeIndex = edgeIndex;
++edgeIndex;
vertexIndex1 = vertexIndex2;
} while (vertexIndex1);
if (edgeIndex > 3) {
const FloatPolygonEdge& firstEdge = m_edges[0];
const FloatPolygonEdge& lastEdge = m_edges[edgeIndex - 1];
if (areCollinearPoints(lastEdge.vertex1(), lastEdge.vertex2(), firstEdge.vertex2())) {
m_edges[0].m_vertexIndex1 = lastEdge.m_vertexIndex1;
edgeIndex--;
}
}
m_edges.resize(edgeIndex);
m_empty = m_edges.size() < 3;
if (m_empty)
return;
for (unsigned i = 0; i < m_edges.size(); ++i) {
FloatPolygonEdge* edge = &m_edges[i];
m_edgeTree.add(EdgeInterval(edge->minY(), edge->maxY(), edge));
}
}
bool FloatPolygon::overlappingEdges(float minY, float maxY, Vector<const FloatPolygonEdge*>& result) const
{
Vector<FloatPolygon::EdgeInterval> overlappingEdgeIntervals;
m_edgeTree.allOverlaps(FloatPolygon::EdgeInterval(minY, maxY, 0), overlappingEdgeIntervals);
unsigned overlappingEdgeIntervalsSize = overlappingEdgeIntervals.size();
result.resize(overlappingEdgeIntervalsSize);
for (unsigned i = 0; i < overlappingEdgeIntervalsSize; ++i) {
const FloatPolygonEdge* edge = static_cast<const FloatPolygonEdge*>(overlappingEdgeIntervals[i].data());
ASSERT(edge);
result[i] = edge;
}
return overlappingEdgeIntervalsSize > 0;
}
static inline float leftSide(const FloatPoint& vertex1, const FloatPoint& vertex2, const FloatPoint& point)
{
return ((point.x() - vertex1.x()) * (vertex2.y() - vertex1.y())) - ((vertex2.x() - vertex1.x()) * (point.y() - vertex1.y()));
}
bool FloatPolygon::contains(const FloatPoint& point) const
{
if (!m_boundingBox.contains(point))
return false;
int windingNumber = 0;
for (unsigned i = 0; i < numberOfEdges(); ++i) {
const FloatPoint& vertex1 = edgeAt(i).vertex1();
const FloatPoint& vertex2 = edgeAt(i).vertex2();
if (isPointOnLineSegment(vertex1, vertex2, point))
return true;
if (vertex2.y() < point.y()) {
if ((vertex1.y() > point.y()) && (leftSide(vertex1, vertex2, point) > 0))
++windingNumber;
} else if (vertex2.y() > point.y()) {
if ((vertex1.y() <= point.y()) && (leftSide(vertex1, vertex2, point) < 0))
--windingNumber;
}
}
return windingNumber;
}
bool VertexPair::overlapsRect(const FloatRect& rect) const
{
bool boundsOverlap = (minX() < rect.maxX()) && (maxX() > rect.x()) && (minY() < rect.maxY()) && (maxY() > rect.y());
if (!boundsOverlap)
return false;
float leftSideValues[4] = {
leftSide(vertex1(), vertex2(), rect.minXMinYCorner()),
leftSide(vertex1(), vertex2(), rect.maxXMinYCorner()),
leftSide(vertex1(), vertex2(), rect.minXMaxYCorner()),
leftSide(vertex1(), vertex2(), rect.maxXMaxYCorner())
};
int currentLeftSideSign = 0;
for (unsigned i = 0; i < 4; ++i) {
if (!leftSideValues[i])
continue;
int leftSideSign = leftSideValues[i] > 0 ? 1 : -1;
if (!currentLeftSideSign)
currentLeftSideSign = leftSideSign;
else if (currentLeftSideSign != leftSideSign)
return true;
}
return false;
}
bool VertexPair::intersection(const VertexPair& other, FloatPoint& point) const
{
// See: http://paulbourke.net/geometry/pointlineplane/, "Intersection point of two lines in 2 dimensions"
const FloatSize& thisDelta = vertex2() - vertex1();
const FloatSize& otherDelta = other.vertex2() - other.vertex1();
float denominator = determinant(thisDelta, otherDelta);
if (!denominator)
return false;
// The two line segments: "this" vertex1,vertex2 and "other" vertex1,vertex2, have been defined
// in parametric form. Each point on the line segment is: vertex1 + u * (vertex2 - vertex1),
// when 0 <= u <= 1. We're computing the values of u for each line at their intersection point.
const FloatSize& vertex1Delta = vertex1() - other.vertex1();
float uThisLine = determinant(otherDelta, vertex1Delta) / denominator;
float uOtherLine = determinant(thisDelta, vertex1Delta) / denominator;
if (uThisLine < 0 || uOtherLine < 0 || uThisLine > 1 || uOtherLine > 1)
return false;
point = vertex1() + uThisLine * thisDelta;
return true;
}
} // namespace WebCore
|