1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224
|
/*
* Copyright (C) 2006, 2007 Eric Seidel <eric@webkit.org>
*
* This library is free software; you can redistribute it and/or
* modify it under the terms of the GNU Library General Public
* License as published by the Free Software Foundation; either
* version 2 of the License, or (at your option) any later version.
*
* This library is distributed in the hope that it will be useful,
* but WITHOUT ANY WARRANTY; without even the implied warranty of
* MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU
* Library General Public License for more details.
*
* You should have received a copy of the GNU Library General Public License
* along with this library; see the file COPYING.LIB. If not, write to
* the Free Software Foundation, Inc., 51 Franklin Street, Fifth Floor,
* Boston, MA 02110-1301, USA.
*/
#include "config.h"
#include "PathTraversalState.h"
#include <wtf/MathExtras.h>
#include <wtf/Vector.h>
namespace WebCore {
static const float kPathSegmentLengthTolerance = 0.00001f;
static inline FloatPoint midPoint(const FloatPoint& first, const FloatPoint& second)
{
return FloatPoint((first.x() + second.x()) / 2.0f, (first.y() + second.y()) / 2.0f);
}
static inline float distanceLine(const FloatPoint& start, const FloatPoint& end)
{
return sqrtf((end.x() - start.x()) * (end.x() - start.x()) + (end.y() - start.y()) * (end.y() - start.y()));
}
struct QuadraticBezier {
QuadraticBezier() { }
QuadraticBezier(const FloatPoint& s, const FloatPoint& c, const FloatPoint& e)
: start(s)
, control(c)
, end(e)
{
}
float approximateDistance() const
{
return distanceLine(start, control) + distanceLine(control, end);
}
void split(QuadraticBezier& left, QuadraticBezier& right) const
{
left.control = midPoint(start, control);
right.control = midPoint(control, end);
FloatPoint leftControlToRightControl = midPoint(left.control, right.control);
left.end = leftControlToRightControl;
right.start = leftControlToRightControl;
left.start = start;
right.end = end;
}
FloatPoint start;
FloatPoint control;
FloatPoint end;
};
struct CubicBezier {
CubicBezier() { }
CubicBezier(const FloatPoint& s, const FloatPoint& c1, const FloatPoint& c2, const FloatPoint& e)
: start(s)
, control1(c1)
, control2(c2)
, end(e)
{
}
float approximateDistance() const
{
return distanceLine(start, control1) + distanceLine(control1, control2) + distanceLine(control2, end);
}
void split(CubicBezier& left, CubicBezier& right) const
{
FloatPoint startToControl1 = midPoint(control1, control2);
left.start = start;
left.control1 = midPoint(start, control1);
left.control2 = midPoint(left.control1, startToControl1);
right.control2 = midPoint(control2, end);
right.control1 = midPoint(right.control2, startToControl1);
right.end = end;
FloatPoint leftControl2ToRightControl1 = midPoint(left.control2, right.control1);
left.end = leftControl2ToRightControl1;
right.start = leftControl2ToRightControl1;
}
FloatPoint start;
FloatPoint control1;
FloatPoint control2;
FloatPoint end;
};
// FIXME: This function is possibly very slow due to the ifs required for proper path measuring
// A simple speed-up would be to use an additional boolean template parameter to control whether
// to use the "fast" version of this function with no PathTraversalState updating, vs. the slow
// version which does update the PathTraversalState. We'll have to shark it to see if that's necessary.
// Another check which is possible up-front (to send us down the fast path) would be to check if
// approximateDistance() + current total distance > desired distance
template<class CurveType>
static float curveLength(PathTraversalState& traversalState, CurveType curve)
{
static const unsigned curveStackDepthLimit = 20;
Vector<CurveType> curveStack;
curveStack.append(curve);
float totalLength = 0;
do {
float length = curve.approximateDistance();
if ((length - distanceLine(curve.start, curve.end)) > kPathSegmentLengthTolerance && curveStack.size() <= curveStackDepthLimit) {
CurveType leftCurve;
CurveType rightCurve;
curve.split(leftCurve, rightCurve);
curve = leftCurve;
curveStack.append(rightCurve);
} else {
totalLength += length;
if (traversalState.m_action == PathTraversalState::TraversalPointAtLength
|| traversalState.m_action == PathTraversalState::TraversalNormalAngleAtLength) {
traversalState.m_previous = curve.start;
traversalState.m_current = curve.end;
if (traversalState.m_totalLength + totalLength > traversalState.m_desiredLength)
return totalLength;
}
curve = curveStack.last();
curveStack.removeLast();
}
} while (!curveStack.isEmpty());
return totalLength;
}
PathTraversalState::PathTraversalState(PathTraversalAction action)
: m_action(action)
, m_success(false)
, m_totalLength(0)
, m_segmentIndex(0)
, m_desiredLength(0)
, m_normalAngle(0)
{
}
float PathTraversalState::closeSubpath()
{
float distance = distanceLine(m_current, m_start);
m_current = m_control1 = m_control2 = m_start;
return distance;
}
float PathTraversalState::moveTo(const FloatPoint& point)
{
m_current = m_start = m_control1 = m_control2 = point;
return 0;
}
float PathTraversalState::lineTo(const FloatPoint& point)
{
float distance = distanceLine(m_current, point);
m_current = m_control1 = m_control2 = point;
return distance;
}
float PathTraversalState::quadraticBezierTo(const FloatPoint& newControl, const FloatPoint& newEnd)
{
float distance = curveLength<QuadraticBezier>(*this, QuadraticBezier(m_current, newControl, newEnd));
m_control1 = newControl;
m_control2 = newEnd;
if (m_action != TraversalPointAtLength && m_action != TraversalNormalAngleAtLength)
m_current = newEnd;
return distance;
}
float PathTraversalState::cubicBezierTo(const FloatPoint& newControl1, const FloatPoint& newControl2, const FloatPoint& newEnd)
{
float distance = curveLength<CubicBezier>(*this, CubicBezier(m_current, newControl1, newControl2, newEnd));
m_control1 = newEnd;
m_control2 = newControl2;
if (m_action != TraversalPointAtLength && m_action != TraversalNormalAngleAtLength)
m_current = newEnd;
return distance;
}
void PathTraversalState::processSegment()
{
if (m_action == TraversalSegmentAtLength && m_totalLength >= m_desiredLength)
m_success = true;
if ((m_action == TraversalPointAtLength || m_action == TraversalNormalAngleAtLength) && m_totalLength >= m_desiredLength) {
float slope = FloatPoint(m_current - m_previous).slopeAngleRadians();
if (m_action == TraversalPointAtLength) {
float offset = m_desiredLength - m_totalLength;
m_current.move(offset * cosf(slope), offset * sinf(slope));
} else
m_normalAngle = rad2deg(slope);
m_success = true;
}
m_previous = m_current;
}
}
|