File: LayerUtilities.h

package info (click to toggle)
qtwebkit-opensource-src 5.7.1%2Bdfsg-1
  • links: PTS, VCS
  • area: main
  • in suites: stretch
  • size: 291,692 kB
  • ctags: 268,122
  • sloc: cpp: 1,360,420; python: 70,286; ansic: 42,986; perl: 35,476; ruby: 12,236; objc: 9,465; xml: 8,396; asm: 3,873; yacc: 2,397; sh: 1,647; makefile: 650; lex: 644; java: 110
file content (308 lines) | stat: -rw-r--r-- 10,569 bytes parent folder | download | duplicates (3)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
/*
 * Copyright (C) 2013 Research In Motion Limited. All rights reserved.
 *
 * This library is free software; you can redistribute it and/or
 * modify it under the terms of the GNU Lesser General Public
 * License as published by the Free Software Foundation; either
 * version 2 of the License, or (at your option) any later version.
 *
 * This library is distributed in the hope that it will be useful,
 * but WITHOUT ANY WARRANTY; without even the implied warranty of
 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the GNU
 * Lesser General Public License for more details.
 *
 * You should have received a copy of the GNU Lesser General Public
 * License along with this library; if not, write to the Free Software
 * Foundation, Inc., 51 Franklin Street, Fifth Floor, Boston, MA  02110-1301  USA
 */

#ifndef LayerUtilities_h
#define LayerUtilities_h

#if USE(ACCELERATED_COMPOSITING)

#include "FloatPoint.h"
#include "FloatPoint3D.h"
#include "FloatQuad.h"
#include "FloatSize.h"
#include "LayerCompositingThread.h"
#include "TransformationMatrix.h"

#include <algorithm>
#include <wtf/Vector.h>

namespace WebCore {

// determinant of column vectors
inline float determinant(const FloatSize& a, const FloatSize& b)
{
    return a.width() * b.height() - a.height() * b.width();
}

// dot product
inline float dot(const FloatSize& a, const FloatSize& b)
{
    return a.width() * b.width() + a.height() * b.height();
}

// Represents a line, not a finite line segment
class LayerClipEdge {
public:
    LayerClipEdge(const FloatPoint& first, const FloatPoint& second)
        : m_first(first)
        , m_second(second)
    {
    }

    inline bool isPointInside(const FloatPoint& p) const
    {
        // For numeric robustness, we prefer to consider a point to be inside rather than
        // clip it again.
        const float epsilon = 1e-6;
        return determinant(m_second - m_first, p - m_first) > -epsilon;
    }

    inline FloatPoint computeIntersection(const FloatPoint& p1, const FloatPoint& p2) const
    {
        const FloatPoint& p3 = m_first;
        const FloatPoint& p4 = m_second;
        float denominator = determinant(p1 - p2, p3 - p4);
        FloatSize determinants(determinant(toFloatSize(p1), toFloatSize(p2)), determinant(toFloatSize(p3), toFloatSize(p4)));
        FloatPoint result(
            determinant(determinants, FloatSize(p1.x() - p2.x(), p3.x() - p4.x())) / denominator,
            determinant(determinants, FloatSize(p1.y() - p2.y(), p3.y() - p4.y())) / denominator);
        return result;
    }

private:
    FloatPoint m_first;
    FloatPoint m_second;
};

// Specifies a clip plane with normal n and containing point p_0
// as p * n + d = 0, d = -p_0 * n. The asterisk is dot product.
class LayerClipPlane {
public:
    LayerClipPlane(FloatPoint3D n, float d)
        : m_n(n)
        , m_d(d)
    {
    }

    inline bool isPointInside(const FloatPoint3D& p) const
    {
        return p * m_n + m_d > 0;
    }

    inline FloatPoint3D computeIntersection(const FloatPoint3D& p1, const FloatPoint3D& p2) const
    {
        float u = (-m_d - p1 * m_n) / ((p2 - p1) * m_n);
        return p1 + u * (p2 - p1);
    }

protected:
    FloatPoint3D m_n;
    float m_d;
};

// Sutherland - Hodgman, inner loop
template<typename Point, size_t inlineCapacity, typename ClipPrimitive>
inline Vector<Point, inlineCapacity> intersect(const Vector<Point, inlineCapacity>& inputList, const ClipPrimitive& clipPrimitive)
{
    Vector<Point, inlineCapacity> outputList;
    Point s;
    if (!inputList.isEmpty())
        s = inputList.last();
    for (typename Vector<Point, inlineCapacity>::const_iterator eIterator = inputList.begin(); eIterator != inputList.end(); ++eIterator) {
        const Point& e = *eIterator;
        if (clipPrimitive.isPointInside(e)) {
            if (!clipPrimitive.isPointInside(s))
                outputList.append(clipPrimitive.computeIntersection(s, e));
            outputList.append(e);
        } else if (clipPrimitive.isPointInside(s))
            outputList.append(clipPrimitive.computeIntersection(s, e));
        s = e;
    }
    return outputList;
}

// Sutherland - Hodgman, main driver
template<size_t inlineCapacity>
inline Vector<FloatPoint, inlineCapacity> intersectPolygonWithRect(const Vector<FloatPoint, inlineCapacity>& subjectPolygon, const FloatRect& clipRect)
{
    FloatQuad clipQuad(clipRect);
    Vector<LayerClipEdge> edges;
    edges.append(LayerClipEdge(clipQuad.p1(), clipQuad.p2()));
    edges.append(LayerClipEdge(clipQuad.p2(), clipQuad.p3()));
    edges.append(LayerClipEdge(clipQuad.p3(), clipQuad.p4()));
    edges.append(LayerClipEdge(clipQuad.p4(), clipQuad.p1()));

    Vector<FloatPoint> outputList = subjectPolygon;
    for (Vector<LayerClipEdge>::const_iterator clipEdgeIterator = edges.begin(); clipEdgeIterator != edges.end(); ++clipEdgeIterator) {
        const LayerClipEdge& clipEdge = *clipEdgeIterator;
        Vector<FloatPoint> inputList = outputList;
        outputList = intersect(inputList, clipEdge);
    }
    return outputList;
}

template<size_t inlineCapacity>
inline FloatRect boundingBox(const Vector<FloatPoint, inlineCapacity>& points)
{
    if (points.isEmpty())
        return FloatRect();
    float xmin, xmax, ymin, ymax;
    xmin = ymin = std::numeric_limits<float>::infinity();
    xmax = ymax = -std::numeric_limits<float>::infinity();
    for (size_t i = 0; i < points.size(); ++i) {
        const FloatPoint& p = points[i];
        if (p.x() < xmin)
            xmin = p.x();
        if (p.x() > xmax)
            xmax = p.x();
        if (p.y() < ymin)
            ymin = p.y();
        if (p.y() > ymax)
            ymax = p.y();
    }
    return FloatRect(xmin, ymin, xmax - xmin, ymax - ymin);
}

inline FloatPoint3D computeBarycentricCoordinates(const FloatPoint& p, const FloatPoint& t1, const FloatPoint& t2, const FloatPoint& t3, bool& ok)
{
    // Compute vectors
    FloatSize v0 = t2 - t1;
    FloatSize v1 = t3 - t1;
    FloatSize v2 = p - t1;

    // Compute dot products
    float dot00 = dot(v0, v0);
    float dot01 = dot(v0, v1);
    float dot02 = dot(v0, v2);
    float dot11 = dot(v1, v1);
    float dot12 = dot(v1, v2);

    // Compute barycentric coordinates
    float denominator = (dot00 * dot11 - dot01 * dot01);
    ok = (denominator != 0.0);
    if (!ok)
        return FloatPoint3D();

    float v = (dot11 * dot02 - dot01 * dot12) / denominator;
    float w = (dot00 * dot12 - dot01 * dot02) / denominator;

    return FloatPoint3D(1.0f - v - w, v, w);
}

inline float manhattanDistanceToViewport(const FloatPoint& p)
{
    float d = 0;
    if (fabsf(p.x()) > 1)
        d += fabsf(p.x()) - 1;
    if (fabsf(p.y()) > 1)
        d += fabsf(p.y()) - 1;
    return d;
}

struct UnprojectionVertex {
    FloatPoint xy;
    float w;
    FloatSize uv;
};

inline bool compareManhattanDistanceToViewport(const UnprojectionVertex& a, const UnprojectionVertex& b)
{
    return manhattanDistanceToViewport(a.xy) < manhattanDistanceToViewport(b.xy);
}

template<size_t inlineCapacity>
inline Vector<FloatPoint, inlineCapacity> unproject(LayerCompositingThread* layer, const Vector<FloatPoint, inlineCapacity>& points)
{
    // Use perspective correct texturing logic to find the locations of these points in normalized layer coordinates
    Vector<FloatPoint, 4> bounds = layer->transformedBounds();
    Vector<float, 4> ws = layer->ws();
    if (ws.isEmpty())
        ws.fill(0.0f, bounds.size());
    const Vector<FloatPoint>& texCoords = layer->textureCoordinates();
    if (bounds.size() < 3)
        return Vector<FloatPoint, inlineCapacity>();

    Vector<UnprojectionVertex, 4> vertices(bounds.size());
    for (size_t i = 0; i < bounds.size(); ++i) {
        vertices[i].xy = bounds[i];
        vertices[i].w = ws[i];
        vertices[i].uv = toFloatSize(texCoords[i]);
    }
    // Each point needs to be qualified as lying in one of the triangles formed by the "bounds" triangle strip
    // Try to use only points that are onscreen, for numerical stability
    std::sort(vertices.begin(), vertices.end(), compareManhattanDistanceToViewport);

    Vector<FloatPoint, inlineCapacity> result;

    size_t i0 = 0;

    const FloatPoint& p0 = vertices[i0].xy;
    float w0 = vertices[i0].w;
    FloatSize uv0 = vertices[i0].uv;

    for (size_t j = 0; j < points.size(); ++j) {
        const FloatPoint& p = points[j];
        FloatPoint texCoord;
        for (size_t di = 1; di + 1 < vertices.size(); ++di) {
            size_t i = (i0 + di) % vertices.size();
            const FloatPoint& p1 = vertices[i].xy;
            const FloatPoint& p2 = vertices[i + 1].xy;
            float w1 = vertices[i].w;
            float w2 = vertices[i + 1].w;
            FloatSize uv1 = vertices[i].uv;
            FloatSize uv2 = vertices[i + 1].uv;

            bool ok;
            FloatPoint3D b = computeBarycentricCoordinates(p, p0, p1, p2, ok);
            if (!ok)
                continue;

            if (w0 && w1 && w2) {
                // Perspective correct interpolation
                FloatPoint3D bw(b.x() / w0, b.y() / w1, b.z() / w2);
                float denominator = bw.x() + bw.y() + bw.z();
                texCoord = FloatPoint::zero() + (bw.x() * uv0 + bw.y() * uv1 + bw.z() * uv2);
                texCoord.setX(texCoord.x() / denominator);
                texCoord.setY(texCoord.y() / denominator);
            } else {
                // Linear interpolation
                texCoord = FloatPoint::zero() + (b.x() * uv0 + b.y() * uv1 + b.z() * uv2);
            }
            break;
        }
        result.append(texCoord);
    }
    return result;
}

inline FloatPoint3D multVecMatrix(const TransformationMatrix& matrix, const FloatPoint3D& p, float& w)
{
    FloatPoint3D result(
        matrix.m41() + p.x() * matrix.m11() + p.y() * matrix.m21() + p.z() * matrix.m31(),
        matrix.m42() + p.x() * matrix.m12() + p.y() * matrix.m22() + p.z() * matrix.m32(),
        matrix.m43() + p.x() * matrix.m13() + p.y() * matrix.m23() + p.z() * matrix.m33());
    w = matrix.m44() + p.x() * matrix.m14() + p.y() * matrix.m24() + p.z() * matrix.m34();
    return result;
}

template<typename Point, size_t inlineCapacity>
inline Vector<Point, inlineCapacity> toVector(const FloatQuad& quad)
{
    Vector<Point, inlineCapacity> result;
    result.append(quad.p1());
    result.append(quad.p2());
    result.append(quad.p3());
    result.append(quad.p4());
    return result;
}

} // namespace WebCore

#endif // USE(ACCELERATED_COMPOSITING)

#endif // LayerUtilities_h