1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279
|
/*
* Copyright (C) 2010 Google Inc. All rights reserved.
*
* Redistribution and use in source and binary forms, with or without
* modification, are permitted provided that the following conditions
* are met:
*
* 1. Redistributions of source code must retain the above copyright
* notice, this list of conditions and the following disclaimer.
* 2. Redistributions in binary form must reproduce the above copyright
* notice, this list of conditions and the following disclaimer in the
* documentation and/or other materials provided with the distribution.
*
* THIS SOFTWARE IS PROVIDED BY APPLE AND ITS CONTRIBUTORS "AS IS" AND ANY
* EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED
* WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE
* DISCLAIMED. IN NO EVENT SHALL APPLE OR ITS CONTRIBUTORS BE LIABLE FOR ANY
* DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES
* (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES;
* LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND
* ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT
* (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE OF
* THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
*/
#include "config.h"
#if ENABLE(ACCELERATED_2D_CANVAS)
#include "LoopBlinnLocalTriangulator.h"
#include "LoopBlinnMathUtils.h"
#include <algorithm>
namespace WebCore {
using LoopBlinnMathUtils::approxEqual;
using LoopBlinnMathUtils::linesIntersect;
using LoopBlinnMathUtils::pointInTriangle;
bool LoopBlinnLocalTriangulator::Triangle::contains(LoopBlinnLocalTriangulator::Vertex* v)
{
return indexForVertex(v) >= 0;
}
LoopBlinnLocalTriangulator::Vertex* LoopBlinnLocalTriangulator::Triangle::nextVertex(LoopBlinnLocalTriangulator::Vertex* current, bool traverseCounterClockwise)
{
int index = indexForVertex(current);
ASSERT(index >= 0);
if (traverseCounterClockwise)
++index;
else
--index;
if (index < 0)
index += 3;
else
index = index % 3;
return m_vertices[index];
}
int LoopBlinnLocalTriangulator::Triangle::indexForVertex(LoopBlinnLocalTriangulator::Vertex* vertex)
{
for (int i = 0; i < 3; ++i)
if (m_vertices[i] == vertex)
return i;
return -1;
}
void LoopBlinnLocalTriangulator::Triangle::makeCounterClockwise()
{
// Possibly swaps two vertices so that the triangle's vertices are
// always specified in counterclockwise order. This orders the
// vertices canonically when walking the interior edges from the
// start to the end vertex.
FloatPoint3D point0(m_vertices[0]->xyCoordinates());
FloatPoint3D point1(m_vertices[1]->xyCoordinates());
FloatPoint3D point2(m_vertices[2]->xyCoordinates());
FloatPoint3D crossProduct = (point1 - point0).cross(point2 - point0);
if (crossProduct.z() < 0)
std::swap(m_vertices[1], m_vertices[2]);
}
LoopBlinnLocalTriangulator::LoopBlinnLocalTriangulator()
{
reset();
}
void LoopBlinnLocalTriangulator::reset()
{
m_numberOfTriangles = 0;
m_numberOfInteriorVertices = 0;
for (int i = 0; i < 4; ++i) {
m_interiorVertices[i] = 0;
m_vertices[i].resetFlags();
}
}
void LoopBlinnLocalTriangulator::triangulate(InsideEdgeComputation computeInsideEdges, LoopBlinnConstants::FillSide sideToFill)
{
triangulateHelper(sideToFill);
if (computeInsideEdges == ComputeInsideEdges) {
// We need to compute which vertices describe the path along the
// interior portion of the shape, to feed these vertices to the
// more general tessellation algorithm. It is possible that we
// could determine this directly while producing triangles above.
// Here we try to do it generally just by examining the triangles
// that have already been produced. We walk around them in a
// specific direction determined by which side of the curve is
// being filled. We ignore the interior vertex unless it is also
// the ending vertex, and skip the edges shared between two
// triangles.
Vertex* v = &m_vertices[0];
addInteriorVertex(v);
int numSteps = 0;
while (!v->end() && numSteps < 4) {
// Find the next vertex according to the above rules
bool gotNext = false;
for (int i = 0; i < numberOfTriangles() && !gotNext; ++i) {
Triangle* tri = getTriangle(i);
if (tri->contains(v)) {
Vertex* next = tri->nextVertex(v, sideToFill == LoopBlinnConstants::RightSide);
if (!next->marked() && !isSharedEdge(v, next) && (!next->interior() || next->end())) {
addInteriorVertex(next);
v = next;
// Break out of for loop
gotNext = true;
}
}
}
++numSteps;
}
if (!v->end()) {
// Something went wrong with the above algorithm; add the last
// vertex to the interior vertices anyway. (FIXME: should we
// add an assert here and do more extensive testing?)
addInteriorVertex(&m_vertices[3]);
}
}
}
void LoopBlinnLocalTriangulator::triangulateHelper(LoopBlinnConstants::FillSide sideToFill)
{
reset();
m_vertices[3].setEnd(true);
// First test for degenerate cases.
for (int i = 0; i < 4; ++i) {
for (int j = i + 1; j < 4; ++j) {
if (approxEqual(m_vertices[i].xyCoordinates(), m_vertices[j].xyCoordinates())) {
// Two of the vertices are coincident, so we can eliminate at
// least one triangle. We might be able to eliminate the other
// as well, but this seems sufficient to avoid degenerate
// triangulations.
int indices[3] = { 0 };
int index = 0;
for (int k = 0; k < 4; ++k)
if (k != j)
indices[index++] = k;
addTriangle(&m_vertices[indices[0]],
&m_vertices[indices[1]],
&m_vertices[indices[2]]);
return;
}
}
}
// See whether any of the points are fully contained in the
// triangle defined by the other three.
for (int i = 0; i < 4; ++i) {
int indices[3] = { 0 };
int index = 0;
for (int j = 0; j < 4; ++j)
if (i != j)
indices[index++] = j;
if (pointInTriangle(m_vertices[i].xyCoordinates(),
m_vertices[indices[0]].xyCoordinates(),
m_vertices[indices[1]].xyCoordinates(),
m_vertices[indices[2]].xyCoordinates())) {
// Produce three triangles surrounding this interior vertex.
for (int j = 0; j < 3; ++j)
addTriangle(&m_vertices[indices[j % 3]],
&m_vertices[indices[(j + 1) % 3]],
&m_vertices[i]);
// Mark the interior vertex so we ignore it if trying to trace
// the interior edge.
m_vertices[i].setInterior(true);
return;
}
}
// There are only a few permutations of the vertices, ignoring
// rotations, which are irrelevant:
//
// 0--3 0--2 0--3 0--1 0--2 0--1
// | | | | | | | | | | | |
// | | | | | | | | | | | |
// 1--2 1--3 2--1 2--3 3--1 3--2
//
// Note that three of these are reflections of each other.
// Therefore there are only three possible triangulations:
//
// 0--3 0--2 0--3
// |\ | |\ | |\ |
// | \| | \| | \|
// 1--2 1--3 2--1
//
// From which we can choose by seeing which of the potential
// diagonals intersect. Note that we choose the shortest diagonal
// to split the quad.
if (linesIntersect(m_vertices[0].xyCoordinates(),
m_vertices[2].xyCoordinates(),
m_vertices[1].xyCoordinates(),
m_vertices[3].xyCoordinates())) {
if ((m_vertices[2].xyCoordinates() - m_vertices[0].xyCoordinates()).diagonalLengthSquared() <
(m_vertices[3].xyCoordinates() - m_vertices[1].xyCoordinates()).diagonalLengthSquared()) {
addTriangle(&m_vertices[0], &m_vertices[1], &m_vertices[2]);
addTriangle(&m_vertices[0], &m_vertices[2], &m_vertices[3]);
} else {
addTriangle(&m_vertices[0], &m_vertices[1], &m_vertices[3]);
addTriangle(&m_vertices[1], &m_vertices[2], &m_vertices[3]);
}
} else if (linesIntersect(m_vertices[0].xyCoordinates(),
m_vertices[3].xyCoordinates(),
m_vertices[1].xyCoordinates(),
m_vertices[2].xyCoordinates())) {
if ((m_vertices[3].xyCoordinates() - m_vertices[0].xyCoordinates()).diagonalLengthSquared() <
(m_vertices[2].xyCoordinates() - m_vertices[1].xyCoordinates()).diagonalLengthSquared()) {
addTriangle(&m_vertices[0], &m_vertices[1], &m_vertices[3]);
addTriangle(&m_vertices[0], &m_vertices[3], &m_vertices[2]);
} else {
addTriangle(&m_vertices[0], &m_vertices[1], &m_vertices[2]);
addTriangle(&m_vertices[2], &m_vertices[1], &m_vertices[3]);
}
} else {
// Lines (0->1), (2->3) intersect -- or should, modulo numerical
// precision issues
if ((m_vertices[1].xyCoordinates() - m_vertices[0].xyCoordinates()).diagonalLengthSquared() <
(m_vertices[3].xyCoordinates() - m_vertices[2].xyCoordinates()).diagonalLengthSquared()) {
addTriangle(&m_vertices[0], &m_vertices[2], &m_vertices[1]);
addTriangle(&m_vertices[0], &m_vertices[1], &m_vertices[3]);
} else {
addTriangle(&m_vertices[0], &m_vertices[2], &m_vertices[3]);
addTriangle(&m_vertices[3], &m_vertices[2], &m_vertices[1]);
}
}
}
void LoopBlinnLocalTriangulator::addTriangle(Vertex* v0, Vertex* v1, Vertex* v2)
{
ASSERT(m_numberOfTriangles < 3);
m_triangles[m_numberOfTriangles++].setVertices(v0, v1, v2);
}
void LoopBlinnLocalTriangulator::addInteriorVertex(Vertex* v)
{
ASSERT(m_numberOfInteriorVertices < 4);
m_interiorVertices[m_numberOfInteriorVertices++] = v;
v->setMarked(true);
}
bool LoopBlinnLocalTriangulator::isSharedEdge(Vertex* v0, Vertex* v1)
{
bool haveEdge01 = false;
bool haveEdge10 = false;
for (int i = 0; i < numberOfTriangles(); ++i) {
Triangle* tri = getTriangle(i);
if (tri->contains(v0) && tri->nextVertex(v0, true) == v1)
haveEdge01 = true;
if (tri->contains(v1) && tri->nextVertex(v1, true) == v0)
haveEdge10 = true;
}
return haveEdge01 && haveEdge10;
}
} // namespace WebCore
#endif
|