1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670
|
/*
* Copyright (C) 2010 Google Inc. All rights reserved.
*
* Redistribution and use in source and binary forms, with or without
* modification, are permitted provided that the following conditions
* are met:
*
* 1. Redistributions of source code must retain the above copyright
* notice, this list of conditions and the following disclaimer.
* 2. Redistributions in binary form must reproduce the above copyright
* notice, this list of conditions and the following disclaimer in the
* documentation and/or other materials provided with the distribution.
*
* THIS SOFTWARE IS PROVIDED BY APPLE AND ITS CONTRIBUTORS "AS IS" AND ANY
* EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED
* WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE
* DISCLAIMED. IN NO EVENT SHALL APPLE OR ITS CONTRIBUTORS BE LIABLE FOR ANY
* DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES
* (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES;
* LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND
* ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT
* (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE OF
* THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
*/
#include "config.h"
#if USE(ACCELERATED_COMPOSITING) || ENABLE(ACCELERATED_2D_CANVAS)
#include "LoopBlinnMathUtils.h"
#include "FloatPoint.h"
#include <algorithm>
#include <wtf/MathExtras.h>
namespace WebCore {
namespace LoopBlinnMathUtils {
namespace {
// Utility functions local to this file.
int orientation(const FloatPoint& p1,
const FloatPoint& p2,
const FloatPoint& p3)
{
float crossProduct = (p2.y() - p1.y()) * (p3.x() - p2.x()) - (p3.y() - p2.y()) * (p2.x() - p1.x());
return (crossProduct < 0.0f) ? -1 : ((crossProduct > 0.0f) ? 1 : 0);
}
bool edgeEdgeTest(const FloatSize& v0Delta,
const FloatPoint& v0,
const FloatPoint& u0,
const FloatPoint& u1)
{
// This edge to edge test is based on Franlin Antonio's gem: "Faster
// Line Segment Intersection", in Graphics Gems III, pp. 199-202.
float ax = v0Delta.width();
float ay = v0Delta.height();
float bx = u0.x() - u1.x();
float by = u0.y() - u1.y();
float cx = v0.x() - u0.x();
float cy = v0.y() - u0.y();
float f = ay * bx - ax * by;
float d = by * cx - bx * cy;
if ((f > 0 && d >= 0 && d <= f) || (f < 0 && d <= 0 && d >= f)) {
float e = ax * cy - ay * cx;
// This additional test avoids reporting coincident edges, which
// is the behavior we want.
if (approxEqual(e, 0) || approxEqual(f, 0) || approxEqual(e, f))
return false;
if (f > 0)
return e >= 0 && e <= f;
return e <= 0 && e >= f;
}
return false;
}
bool edgeAgainstTriangleEdges(const FloatPoint& v0,
const FloatPoint& v1,
const FloatPoint& u0,
const FloatPoint& u1,
const FloatPoint& u2)
{
FloatSize delta = v1 - v0;
// Test edge u0, u1 against v0, v1.
if (edgeEdgeTest(delta, v0, u0, u1))
return true;
// Test edge u1, u2 against v0, v1.
if (edgeEdgeTest(delta, v0, u1, u2))
return true;
// Test edge u2, u1 against v0, v1.
if (edgeEdgeTest(delta, v0, u2, u0))
return true;
return false;
}
// A roundoff factor in the cubic classification and texture coordinate
// generation algorithms. It primarily determines the handling of corner
// cases during the classification process. Be careful when adjusting it;
// it has been determined empirically to work well. When changing it, you
// should look in particular at shapes that contain quadratic curves and
// ensure they still look smooth. Once pixel tests are running against this
// algorithm, they should provide sufficient coverage to ensure that
// adjusting the constant won't break anything.
const float Epsilon = 5.0e-4f;
} // anonymous namespace
// Exported routines
float roundToZero(float val)
{
if (val < Epsilon && val > -Epsilon)
return 0;
return val;
}
bool approxEqual(const FloatPoint& v0, const FloatPoint& v1)
{
return (v0 - v1).diagonalLengthSquared() < Epsilon * Epsilon;
}
bool approxEqual(const FloatPoint3D& v0, const FloatPoint3D& v1)
{
return (v0 - v1).lengthSquared() < Epsilon * Epsilon;
}
bool approxEqual(float f0, float f1)
{
return fabsf(f0 - f1) < Epsilon;
}
bool linesIntersect(const FloatPoint& p1,
const FloatPoint& q1,
const FloatPoint& p2,
const FloatPoint& q2)
{
return (orientation(p1, q1, p2) != orientation(p1, q1, q2)
&& orientation(p2, q2, p1) != orientation(p2, q2, q1));
}
bool pointInTriangle(const FloatPoint& point,
const FloatPoint& a,
const FloatPoint& b,
const FloatPoint& c)
{
// Algorithm from http://www.blackpawn.com/texts/pointinpoly/default.html
float x0 = c.x() - a.x();
float y0 = c.y() - a.y();
float x1 = b.x() - a.x();
float y1 = b.y() - a.y();
float x2 = point.x() - a.x();
float y2 = point.y() - a.y();
float dot00 = x0 * x0 + y0 * y0;
float dot01 = x0 * x1 + y0 * y1;
float dot02 = x0 * x2 + y0 * y2;
float dot11 = x1 * x1 + y1 * y1;
float dot12 = x1 * x2 + y1 * y2;
float denominator = dot00 * dot11 - dot01 * dot01;
if (!denominator)
// Triangle is zero-area. Treat query point as not being inside.
return false;
// Compute
float inverseDenominator = 1.0f / denominator;
float u = (dot11 * dot02 - dot01 * dot12) * inverseDenominator;
float v = (dot00 * dot12 - dot01 * dot02) * inverseDenominator;
return (u > 0.0f) && (v > 0.0f) && (u + v < 1.0f);
}
bool trianglesOverlap(const FloatPoint& a1,
const FloatPoint& b1,
const FloatPoint& c1,
const FloatPoint& a2,
const FloatPoint& b2,
const FloatPoint& c2)
{
// Derived from coplanar_tri_tri() at
// http://jgt.akpeters.com/papers/ShenHengTang03/tri_tri.html ,
// simplified for the 2D case and modified so that overlapping edges
// do not report overlapping triangles.
// Test all edges of triangle 1 against the edges of triangle 2.
if (edgeAgainstTriangleEdges(a1, b1, a2, b2, c2)
|| edgeAgainstTriangleEdges(b1, c1, a2, b2, c2)
|| edgeAgainstTriangleEdges(c1, a1, a2, b2, c2))
return true;
// Finally, test if tri1 is totally contained in tri2 or vice versa.
// The paper above only performs the first two point-in-triangle tests.
// Because we define that triangles sharing a vertex or edge don't
// overlap, we must perform additional tests to see whether one
// triangle is contained in the other.
if (pointInTriangle(a1, a2, b2, c2)
|| pointInTriangle(a2, a1, b1, c1)
|| pointInTriangle(b1, a2, b2, c2)
|| pointInTriangle(b2, a1, b1, c1)
|| pointInTriangle(c1, a2, b2, c2)
|| pointInTriangle(c2, a1, b1, c1))
return true;
return false;
}
namespace {
// Helper routines for public XRay queries below. All of this code
// originated in Skia; see include/core/ and src/core/, SkScalar.h and
// SkGeometry.{cpp,h}.
const float NearlyZeroConstant = (1.0f / (1 << 12));
bool nearlyZero(float x, float tolerance = NearlyZeroConstant)
{
ASSERT(tolerance > 0.0f);
return ::fabsf(x) < tolerance;
}
// Linearly interpolate between a and b, based on t.
// If t is 0, return a; if t is 1, return b; else interpolate.
// t must be [0..1].
float interpolate(float a, float b, float t)
{
ASSERT(t >= 0 && t <= 1);
return a + (b - a) * t;
}
float evaluateCubic(float controlPoint0, float controlPoint1, float controlPoint2, float controlPoint3, float t)
{
ASSERT(t >= 0 && t <= 1);
if (!t)
return controlPoint0;
float ab = interpolate(controlPoint0, controlPoint1, t);
float bc = interpolate(controlPoint1, controlPoint2, t);
float cd = interpolate(controlPoint2, controlPoint3, t);
float abc = interpolate(ab, bc, t);
float bcd = interpolate(bc, cd, t);
return interpolate(abc, bcd, t);
}
// Evaluates the point on the source cubic specified by t, 0 <= t <= 1.0.
FloatPoint evaluateCubicAt(const FloatPoint cubic[4], float t)
{
return FloatPoint(evaluateCubic(cubic[0].x(), cubic[1].x(), cubic[2].x(), cubic[3].x(), t),
evaluateCubic(cubic[0].y(), cubic[1].y(), cubic[2].y(), cubic[3].y(), t));
}
bool xRayCrossesMonotonicCubic(const XRay& xRay, const FloatPoint cubic[4], bool& ambiguous)
{
ambiguous = false;
// Find the minimum and maximum y of the extrema, which are the
// first and last points since this cubic is monotonic
float minY = std::min(cubic[0].y(), cubic[3].y());
float maxY = std::max(cubic[0].y(), cubic[3].y());
if (xRay.y() == cubic[0].y()
|| xRay.y() < minY
|| xRay.y() > maxY) {
// The query line definitely does not cross the curve
ambiguous = (xRay.y() == cubic[0].y());
return false;
}
const bool pointAtExtremum = (xRay.y() == cubic[3].y());
float minX = std::min(std::min(std::min(cubic[0].x(), cubic[1].x()),
cubic[2].x()),
cubic[3].x());
if (xRay.x() < minX) {
// The query line definitely crosses the curve
ambiguous = pointAtExtremum;
return true;
}
float maxX = std::max(std::max(std::max(cubic[0].x(), cubic[1].x()),
cubic[2].x()),
cubic[3].x());
if (xRay.x() > maxX)
// The query line definitely does not cross the curve
return false;
// Do a binary search to find the parameter value which makes y as
// close as possible to the query point. See whether the query
// line's origin is to the left of the associated x coordinate.
// MaxIterations is chosen as the number of mantissa bits for a float,
// since there's no way we are going to get more precision by
// iterating more times than that.
const int MaxIterations = 23;
FloatPoint evaluatedPoint;
int iter = 0;
float upperT;
float lowerT;
// Need to invert direction of t parameter if cubic goes up
// instead of down
if (cubic[3].y() > cubic[0].y()) {
upperT = 1;
lowerT = 0;
} else {
upperT = 0;
lowerT = 1;
}
do {
float t = 0.5f * (upperT + lowerT);
evaluatedPoint = evaluateCubicAt(cubic, t);
if (xRay.y() > evaluatedPoint.y())
lowerT = t;
else
upperT = t;
} while (++iter < MaxIterations && !nearlyZero(evaluatedPoint.y() - xRay.y()));
// FIXME: once we have more regression tests for this code,
// determine whether this should be using a fuzzy test.
if (xRay.x() <= evaluatedPoint.x()) {
ambiguous = pointAtExtremum;
return true;
}
return false;
}
// Divides the numerator by the denominator safely for the case where
// the result must lie in the range (0..1). Result indicates whether
// the result is valid.
bool safeUnitDivide(float numerator, float denominator, float& ratio)
{
if (numerator < 0) {
// Make the "numerator >= denominator" check below work.
numerator = -numerator;
denominator = -denominator;
}
if (!numerator || !denominator || numerator >= denominator)
return false;
float r = numerator / denominator;
if (std::isnan(r))
return false;
ASSERT(r >= 0 && r < 1);
if (!r) // catch underflow if numerator <<<< denominator
return false;
ratio = r;
return true;
}
// From Numerical Recipes in C.
//
// q = -1/2 (b + sign(b) sqrt[b*b - 4*a*c])
// x1 = q / a
// x2 = c / q
//
// Returns the number of real roots of the equation [0..2]. Roots are
// returned in sorted order, smaller root first.
int findUnitQuadRoots(float a, float b, float c, float roots[2])
{
if (!a)
return safeUnitDivide(-c, b, roots[0]) ? 1 : 0;
float discriminant = b*b - 4*a*c;
if (discriminant < 0 || std::isnan(discriminant)) // complex roots
return 0;
discriminant = sqrtf(discriminant);
float q = (b < 0) ? -(b - discriminant) / 2 : -(b + discriminant) / 2;
int numberOfRoots = 0;
if (safeUnitDivide(q, a, roots[numberOfRoots]))
++numberOfRoots;
if (safeUnitDivide(c, q, roots[numberOfRoots]))
++numberOfRoots;
if (numberOfRoots == 2) {
// Seemingly have two roots. Check for equality and sort.
if (roots[0] == roots[1])
return 1;
if (roots[0] > roots[1])
std::swap(roots[0], roots[1]);
}
return numberOfRoots;
}
// Cubic'(t) = pt^2 + qt + r, where
// p = 3(-a + 3(b - c) + d)
// q = 6(a - 2b + c)
// r = 3(b - a)
// Solve for t, keeping only those that fit between 0 < t < 1.
int findCubicExtrema(float a, float b, float c, float d, float tValues[2])
{
// Divide p, q, and r by 3 to simplify the equations.
float p = d - a + 3*(b - c);
float q = 2*(a - b - b + c);
float r = b - a;
return findUnitQuadRoots(p, q, r, tValues);
}
void interpolateCubicCoords(float controlPoint0, float controlPoint1, float controlPoint2, float controlPoint3, float* dst, float t)
{
float ab = interpolate(controlPoint0, controlPoint1, t);
float bc = interpolate(controlPoint1, controlPoint2, t);
float cd = interpolate(controlPoint2, controlPoint3, t);
float abc = interpolate(ab, bc, t);
float bcd = interpolate(bc, cd, t);
float abcd = interpolate(abc, bcd, t);
dst[0] = controlPoint0;
dst[2] = ab;
dst[4] = abc;
dst[6] = abcd;
dst[8] = bcd;
dst[10] = cd;
dst[12] = controlPoint3;
}
#ifndef NDEBUG
bool isUnitInterval(float x)
{
return x > 0 && x < 1;
}
#endif
void chopCubicAtTValues(const FloatPoint src[4], FloatPoint dst[], const float tValues[], int roots)
{
#ifndef NDEBUG
for (int i = 0; i < roots - 1; ++i) {
ASSERT(isUnitInterval(tValues[i]));
ASSERT(isUnitInterval(tValues[i+1]));
ASSERT(tValues[i] < tValues[i+1]);
}
#endif
if (!roots) {
// nothing to chop
for (int j = 0; j < 4; ++j)
dst[j] = src[j];
return;
}
float t = tValues[0];
FloatPoint tmp[4];
for (int j = 0; j < 4; ++j)
tmp[j] = src[j];
for (int i = 0; i < roots; ++i) {
chopCubicAt(tmp, dst, t);
if (i == roots - 1)
break;
dst += 3;
// Make tmp contain the remaining cubic (after the first chop).
for (int j = 0; j < 4; ++j)
tmp[j] = dst[j];
// Watch out for the case that the renormalized t isn't in range.
if (!safeUnitDivide(tValues[i+1] - tValues[i], 1.0f - tValues[i], t)) {
// If it isn't, just create a degenerate cubic.
dst[4] = dst[5] = dst[6] = tmp[3];
break;
}
}
}
void flattenDoubleCubicYExtrema(FloatPoint coords[7])
{
coords[2].setY(coords[3].y());
coords[4].setY(coords[3].y());
}
int chopCubicAtYExtrema(const FloatPoint src[4], FloatPoint dst[10])
{
float tValues[2];
int roots = findCubicExtrema(src[0].y(), src[1].y(), src[2].y(), src[3].y(), tValues);
chopCubicAtTValues(src, dst, tValues, roots);
if (roots) {
// we do some cleanup to ensure our Y extrema are flat
flattenDoubleCubicYExtrema(&dst[0]);
if (roots == 2)
flattenDoubleCubicYExtrema(&dst[3]);
}
return roots;
}
} // anonymous namespace
// Public cubic operations.
void chopCubicAt(const FloatPoint src[4], FloatPoint dst[7], float t)
{
ASSERT(t >= 0 && t <= 1);
float output[14];
interpolateCubicCoords(src[0].x(), src[1].x(), src[2].x(), src[3].x(), &output[0], t);
interpolateCubicCoords(src[0].y(), src[1].y(), src[2].y(), src[3].y(), &output[1], t);
for (int i = 0; i < 7; i++)
dst[i].set(output[2 * i], output[2 * i + 1]);
}
// Public XRay queries.
bool xRayCrossesLine(const XRay& xRay, const FloatPoint pts[2], bool& ambiguous)
{
ambiguous = false;
// Determine quick discards.
// Consider query line going exactly through point 0 to not
// intersect, for symmetry with xRayCrossesMonotonicCubic.
if (xRay.y() == pts[0].y()) {
ambiguous = true;
return false;
}
if (xRay.y() < pts[0].y() && xRay.y() < pts[1].y())
return false;
if (xRay.y() > pts[0].y() && xRay.y() > pts[1].y())
return false;
if (xRay.x() > pts[0].x() && xRay.x() > pts[1].x())
return false;
// Determine degenerate cases
if (nearlyZero(pts[0].y() - pts[1].y()))
return false;
if (nearlyZero(pts[0].x() - pts[1].x())) {
// We've already determined the query point lies within the
// vertical range of the line segment.
if (xRay.x() <= pts[0].x()) {
ambiguous = (xRay.y() == pts[1].y());
return true;
}
return false;
}
// Ambiguity check
if (xRay.y() == pts[1].y()) {
if (xRay.x() <= pts[1].x()) {
ambiguous = true;
return true;
}
return false;
}
// Full line segment evaluation
float deltaY = pts[1].y() - pts[0].y();
float deltaX = pts[1].x() - pts[0].x();
float slope = deltaY / deltaX;
float b = pts[0].y() - slope * pts[0].x();
// Solve for x coordinate at y = xRay.y()
float x = (xRay.y() - b) / slope;
return xRay.x() <= x;
}
int numXRayCrossingsForCubic(const XRay& xRay, const FloatPoint cubic[4], bool& ambiguous)
{
int numCrossings = 0;
FloatPoint monotonicCubics[10];
int numMonotonicCubics = 1 + chopCubicAtYExtrema(cubic, monotonicCubics);
ambiguous = false;
FloatPoint* monotonicCubicsPointer = &monotonicCubics[0];
for (int i = 0; i < numMonotonicCubics; ++i) {
if (xRayCrossesMonotonicCubic(xRay, monotonicCubicsPointer, ambiguous))
++numCrossings;
if (ambiguous)
return 0;
monotonicCubicsPointer += 3;
}
return numCrossings;
}
/*
* Based on C code from the article
* "Testing the Convexity of a Polygon"
* by Peter Schorn and Frederick Fisher,
* (schorn@inf.ethz.ch, fred@kpc.com)
* in "Graphics Gems IV", Academic Press, 1994
*/
static inline int convexCompare(const FloatSize& delta)
{
return (delta.width() > 0) ? -1 : /* x coord diff, second pt > first pt */
(delta.width() < 0) ? 1 : /* x coord diff, second pt < first pt */
(delta.height() > 0) ? -1 : /* x coord same, second pt > first pt */
(delta.height() < 0) ? 1 : /* x coord same, second pt > first pt */
0; /* second pt equals first point */
}
static inline float convexCross(const FloatSize& p, const FloatSize& q)
{
return p.width() * q.height() - p.height() * q.width();
}
static inline bool convexCheckTriple(const FloatSize& dcur, const FloatSize& dprev, int* curDir, int* dirChanges, int* angleSign)
{
int thisDir = convexCompare(dcur);
if (thisDir == -*curDir)
++*dirChanges;
*curDir = thisDir;
float cross = convexCross(dprev, dcur);
if (cross > 0) {
if (*angleSign == -1)
return false;
*angleSign = 1;
} else if (cross < 0) {
if (*angleSign == 1)
return false;
*angleSign = -1;
}
return true;
}
bool isConvex(const FloatPoint* vertices, int nVertices)
{
int dirChanges = 0, angleSign = 0;
FloatPoint second, third;
FloatSize dprev, dcur;
/* Get different point, return if less than 3 diff points. */
if (nVertices < 3)
return false;
int i = 1;
while (true) {
second = vertices[i++];
dprev = second - vertices[0];
if (dprev.width() || dprev.height())
break;
/* Check if out of points. Check here to avoid slowing down cases
* without repeated points.
*/
if (i >= nVertices)
return false;
}
FloatPoint saveSecond = second;
int curDir = convexCompare(dprev); /* Find initial direction */
while (i < nVertices) {
/* Get different point, break if no more points */
third = vertices[i++];
dcur = third - second;
if (!dcur.width() && !dcur.height())
continue;
/* Check current three points */
if (!convexCheckTriple(dcur, dprev, &curDir, &dirChanges, &angleSign))
return false;
second = third; /* Remember ptr to current point. */
dprev = dcur; /* Remember current delta. */
}
/* Must check for direction changes from last vertex back to first */
third = vertices[0]; /* Prepare for 'ConvexCheckTriple' */
dcur = third - second;
if (convexCompare(dcur)) {
if (!convexCheckTriple(dcur, dprev, &curDir, &dirChanges, &angleSign))
return false;
second = third; /* Remember ptr to current point. */
dprev = dcur; /* Remember current delta. */
}
/* and check for direction changes back to second vertex */
dcur = saveSecond - second;
if (!convexCheckTriple(dcur, dprev, &curDir, &dirChanges, &angleSign))
return false;
/* Decide on polygon type given accumulated status */
if (dirChanges > 2)
return false;
if (angleSign > 0 || angleSign < 0)
return true;
return false;
}
} // namespace LoopBlinnMathUtils
} // namespace WebCore
#endif
|