1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444
|
/*
* Copyright (C) 2006 Zack Rusin <zack@kde.org>
* Copyright (C) 2006 Rob Buis <buis@kde.org>
* Copyright (C) 2009, 2010 Dirk Schulze <krit@webkit.org>
* Copyright (C) 2010, 2011 Andreas Kling <kling@webkit.org>
*
* All rights reserved.
*
* Redistribution and use in source and binary forms, with or without
* modification, are permitted provided that the following conditions
* are met:
* 1. Redistributions of source code must retain the above copyright
* notice, this list of conditions and the following disclaimer.
* 2. Redistributions in binary form must reproduce the above copyright
* notice, this list of conditions and the following disclaimer in the
* documentation and/or other materials provided with the distribution.
*
* THIS SOFTWARE IS PROVIDED BY APPLE COMPUTER, INC. ``AS IS'' AND ANY
* EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
* IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR
* PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL APPLE COMPUTER, INC. OR
* CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL,
* EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO,
* PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR
* PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY
* OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT
* (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE
* OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
*/
#include "config.h"
#include "Path.h"
#include "AffineTransform.h"
#include "FloatRect.h"
#include "GraphicsContext.h"
#include "ImageBuffer.h"
#include "NativeImageQt.h"
#include "StrokeStyleApplier.h"
#include <QPainterPath>
#include <QString>
#include <QTransform>
#include <wtf/MathExtras.h>
#include <wtf/OwnPtr.h>
#include <wtf/text/WTFString.h>
namespace WebCore {
Path::Path()
{
}
Path::~Path()
{
}
Path::Path(const Path& other)
: m_path(other.m_path)
{
}
Path& Path::operator=(const Path& other)
{
m_path = other.m_path;
return *this;
}
static inline bool areCollinear(const QPointF& a, const QPointF& b, const QPointF& c)
{
// Solved from comparing the slopes of a to b and b to c: (ay-by)/(ax-bx) == (cy-by)/(cx-bx)
return qFuzzyCompare((c.y() - b.y()) * (a.x() - b.x()), (a.y() - b.y()) * (c.x() - b.x()));
}
static inline bool withinRange(qreal p, qreal a, qreal b)
{
return (p >= a && p <= b) || (p >= b && p <= a);
}
// Check whether a point is on the border
static bool isPointOnPathBorder(const QPolygonF& border, const QPointF& p)
{
// null border doesn't contain points
if (border.isEmpty())
return false;
QPointF p1 = border.at(0);
QPointF p2;
for (int i = 1; i < border.size(); ++i) {
p2 = border.at(i);
if (areCollinear(p, p1, p2)
// Once we know that the points are collinear we
// only need to check one of the coordinates
&& (qAbs(p2.x() - p1.x()) > qAbs(p2.y() - p1.y()) ?
withinRange(p.x(), p1.x(), p2.x()) :
withinRange(p.y(), p1.y(), p2.y()))) {
return true;
}
p1 = p2;
}
return false;
}
bool Path::contains(const FloatPoint& point, WindRule rule) const
{
Qt::FillRule savedRule = m_path.fillRule();
const_cast<QPainterPath*>(&m_path)->setFillRule(rule == RULE_EVENODD ? Qt::OddEvenFill : Qt::WindingFill);
bool contains = m_path.contains(point);
if (!contains) {
// check whether the point is on the border
contains = isPointOnPathBorder(m_path.toFillPolygon(), point);
}
const_cast<QPainterPath*>(&m_path)->setFillRule(savedRule);
return contains;
}
static GraphicsContext* scratchContext()
{
static QImage image(1, 1, NativeImageQt::defaultFormatForAlphaEnabledImages());
static QPainter painter(&image);
static GraphicsContext* context = new GraphicsContext(&painter);
return context;
}
bool Path::strokeContains(StrokeStyleApplier* applier, const FloatPoint& point) const
{
ASSERT(applier);
QPainterPathStroker stroke;
GraphicsContext* context = scratchContext();
applier->strokeStyle(context);
QPen pen = context->platformContext()->pen();
stroke.setWidth(pen.widthF());
stroke.setCapStyle(pen.capStyle());
stroke.setJoinStyle(pen.joinStyle());
stroke.setMiterLimit(pen.miterLimit());
stroke.setDashPattern(pen.dashPattern());
stroke.setDashOffset(pen.dashOffset());
return stroke.createStroke(m_path).contains(point);
}
void Path::translate(const FloatSize& size)
{
m_path.translate(size.width(), size.height());
}
FloatRect Path::fastBoundingRect() const
{
return m_path.controlPointRect();
}
FloatRect Path::boundingRect() const
{
return m_path.boundingRect();
}
FloatRect Path::strokeBoundingRect(StrokeStyleApplier* applier) const
{
GraphicsContext* context = scratchContext();
QPainterPathStroker stroke;
if (applier) {
applier->strokeStyle(context);
QPen pen = context->platformContext()->pen();
stroke.setWidth(pen.widthF());
stroke.setCapStyle(pen.capStyle());
stroke.setJoinStyle(pen.joinStyle());
stroke.setMiterLimit(pen.miterLimit());
stroke.setDashPattern(pen.dashPattern());
stroke.setDashOffset(pen.dashOffset());
}
return stroke.createStroke(m_path).boundingRect();
}
void Path::moveTo(const FloatPoint& point)
{
m_path.moveTo(point);
}
void Path::addLineTo(const FloatPoint& p)
{
m_path.lineTo(p);
}
void Path::addQuadCurveTo(const FloatPoint& cp, const FloatPoint& p)
{
m_path.quadTo(cp, p);
}
void Path::addBezierCurveTo(const FloatPoint& cp1, const FloatPoint& cp2, const FloatPoint& p)
{
m_path.cubicTo(cp1, cp2, p);
}
void Path::addArcTo(const FloatPoint& p1, const FloatPoint& p2, float radius)
{
FloatPoint p0(m_path.currentPosition());
FloatPoint p1p0((p0.x() - p1.x()), (p0.y() - p1.y()));
FloatPoint p1p2((p2.x() - p1.x()), (p2.y() - p1.y()));
float p1p0_length = sqrtf(p1p0.x() * p1p0.x() + p1p0.y() * p1p0.y());
float p1p2_length = sqrtf(p1p2.x() * p1p2.x() + p1p2.y() * p1p2.y());
double cos_phi = (p1p0.x() * p1p2.x() + p1p0.y() * p1p2.y()) / (p1p0_length * p1p2_length);
// The points p0, p1, and p2 are on the same straight line (HTML5, 4.8.11.1.8)
// We could have used areCollinear() here, but since we're reusing
// the variables computed above later on we keep this logic.
if (qFuzzyCompare(qAbs(cos_phi), 1.0)) {
m_path.lineTo(p1);
return;
}
float tangent = radius / tan(acos(cos_phi) / 2);
float factor_p1p0 = tangent / p1p0_length;
FloatPoint t_p1p0((p1.x() + factor_p1p0 * p1p0.x()), (p1.y() + factor_p1p0 * p1p0.y()));
FloatPoint orth_p1p0(p1p0.y(), -p1p0.x());
float orth_p1p0_length = sqrt(orth_p1p0.x() * orth_p1p0.x() + orth_p1p0.y() * orth_p1p0.y());
float factor_ra = radius / orth_p1p0_length;
// angle between orth_p1p0 and p1p2 to get the right vector orthographic to p1p0
double cos_alpha = (orth_p1p0.x() * p1p2.x() + orth_p1p0.y() * p1p2.y()) / (orth_p1p0_length * p1p2_length);
if (cos_alpha < 0.f)
orth_p1p0 = FloatPoint(-orth_p1p0.x(), -orth_p1p0.y());
FloatPoint p((t_p1p0.x() + factor_ra * orth_p1p0.x()), (t_p1p0.y() + factor_ra * orth_p1p0.y()));
// calculate angles for addArc
orth_p1p0 = FloatPoint(-orth_p1p0.x(), -orth_p1p0.y());
float sa = acos(orth_p1p0.x() / orth_p1p0_length);
if (orth_p1p0.y() < 0.f)
sa = 2 * piDouble - sa;
// anticlockwise logic
bool anticlockwise = false;
float factor_p1p2 = tangent / p1p2_length;
FloatPoint t_p1p2((p1.x() + factor_p1p2 * p1p2.x()), (p1.y() + factor_p1p2 * p1p2.y()));
FloatPoint orth_p1p2((t_p1p2.x() - p.x()), (t_p1p2.y() - p.y()));
float orth_p1p2_length = sqrtf(orth_p1p2.x() * orth_p1p2.x() + orth_p1p2.y() * orth_p1p2.y());
float ea = acos(orth_p1p2.x() / orth_p1p2_length);
if (orth_p1p2.y() < 0)
ea = 2 * piDouble - ea;
if ((sa > ea) && ((sa - ea) < piDouble))
anticlockwise = true;
if ((sa < ea) && ((ea - sa) > piDouble))
anticlockwise = true;
m_path.lineTo(t_p1p0);
addArc(p, radius, sa, ea, anticlockwise);
}
void Path::closeSubpath()
{
m_path.closeSubpath();
}
void Path::addArc(const FloatPoint& p, float r, float sar, float ear, bool anticlockwise)
{
qreal xc = p.x();
qreal yc = p.y();
qreal radius = r;
//### HACK
// In Qt we don't switch the coordinate system for degrees
// and still use the 0,0 as bottom left for degrees so we need
// to switch
sar = -sar;
ear = -ear;
anticlockwise = !anticlockwise;
//end hack
float sa = rad2deg(sar);
float ea = rad2deg(ear);
double span = 0;
double xs = xc - radius;
double ys = yc - radius;
double width = radius*2;
double height = radius*2;
if ((!anticlockwise && (ea - sa >= 360)) || (anticlockwise && (sa - ea >= 360))) {
// If the anticlockwise argument is false and endAngle-startAngle is equal to or greater than 2*PI, or, if the
// anticlockwise argument is true and startAngle-endAngle is equal to or greater than 2*PI, then the arc is the whole
// circumference of this circle.
span = 360;
if (anticlockwise)
span = -span;
} else {
if (!anticlockwise && (ea < sa))
span += 360;
else if (anticlockwise && (sa < ea))
span -= 360;
// this is also due to switched coordinate system
// we would end up with a 0 span instead of 360
if (!(qFuzzyCompare(span + (ea - sa) + 1, 1.0)
&& qFuzzyCompare(qAbs(span), 360.0))) {
// mod 360
span += (ea - sa) - (static_cast<int>((ea - sa) / 360)) * 360;
}
}
// If the path is empty, move to where the arc will start to avoid painting a line from (0,0)
// NOTE: QPainterPath::isEmpty() won't work here since it ignores a lone MoveToElement
if (!m_path.elementCount())
m_path.arcMoveTo(xs, ys, width, height, sa);
else if (!radius) {
m_path.lineTo(xc, yc);
return;
}
m_path.arcTo(xs, ys, width, height, sa, span);
}
void Path::addRect(const FloatRect& r)
{
m_path.addRect(r.x(), r.y(), r.width(), r.height());
}
void Path::addEllipse(const FloatRect& r)
{
m_path.addEllipse(r.x(), r.y(), r.width(), r.height());
}
void Path::clear()
{
if (!m_path.elementCount())
return;
m_path = QPainterPath();
}
bool Path::isEmpty() const
{
// Don't use QPainterPath::isEmpty(), as that also returns true if there's only
// one initial MoveTo element in the path.
return !m_path.elementCount();
}
bool Path::hasCurrentPoint() const
{
return !isEmpty();
}
FloatPoint Path::currentPoint() const
{
return m_path.currentPosition();
}
void Path::apply(void* info, PathApplierFunction function) const
{
PathElement pelement;
FloatPoint points[3];
pelement.points = points;
for (int i = 0; i < m_path.elementCount(); ++i) {
const QPainterPath::Element& cur = m_path.elementAt(i);
switch (cur.type) {
case QPainterPath::MoveToElement:
pelement.type = PathElementMoveToPoint;
pelement.points[0] = QPointF(cur);
function(info, &pelement);
break;
case QPainterPath::LineToElement:
pelement.type = PathElementAddLineToPoint;
pelement.points[0] = QPointF(cur);
function(info, &pelement);
break;
case QPainterPath::CurveToElement:
{
const QPainterPath::Element& c1 = m_path.elementAt(i + 1);
const QPainterPath::Element& c2 = m_path.elementAt(i + 2);
Q_ASSERT(c1.type == QPainterPath::CurveToDataElement);
Q_ASSERT(c2.type == QPainterPath::CurveToDataElement);
pelement.type = PathElementAddCurveToPoint;
pelement.points[0] = QPointF(cur);
pelement.points[1] = QPointF(c1);
pelement.points[2] = QPointF(c2);
function(info, &pelement);
i += 2;
break;
}
case QPainterPath::CurveToDataElement:
Q_ASSERT(false);
}
}
}
void Path::transform(const AffineTransform& transform)
{
QTransform qTransform(transform);
m_path = qTransform.map(m_path);
}
float Path::length() const
{
return m_path.length();
}
FloatPoint Path::pointAtLength(float length, bool& ok) const
{
ok = (length >= 0 && length <= m_path.length());
qreal percent = m_path.percentAtLength(length);
QPointF point = m_path.pointAtPercent(percent);
return point;
}
float Path::normalAngleAtLength(float length, bool& ok) const
{
ok = (length >= 0 && length <= m_path.length());
qreal percent = m_path.percentAtLength(length);
qreal angle = m_path.angleAtPercent(percent);
// Normalize angle value.
// QPainterPath returns angle values with the origo being at the top left corner.
// In case of moveTo(0, 0) and addLineTo(0, 10) the angle is 270,
// while the caller expects it to be 90.
// Normalize the value by mirroring it to the x-axis.
// For more info look at pathLengthApplierFunction().
if (angle > 0)
angle = 360 - angle;
return angle;
}
}
// vim: ts=4 sw=4 et
|