1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 721 722 723 724 725 726 727 728 729 730 731 732 733 734 735 736 737 738 739 740 741 742 743 744 745 746 747 748 749 750 751 752 753 754 755 756 757 758 759 760 761 762 763 764 765 766 767 768 769 770 771 772
|
/*
* Copyright (C) 2007-2009 Torch Mobile, Inc.
*
* This library is free software; you can redistribute it and/or
* modify it under the terms of the GNU Library General Public
* License as published by the Free Software Foundation; either
* version 2 of the License, or (at your option) any later version.
*
* This library is distributed in the hope that it will be useful,
* but WITHOUT ANY WARRANTY; without even the implied warranty of
* MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU
* Library General Public License for more details.
*
* You should have received a copy of the GNU Library General Public License
* along with this library; see the file COPYING.LIB. If not, write to
* the Free Software Foundation, Inc., 51 Franklin Street, Fifth Floor,
* Boston, MA 02110-1301, USA.
*/
#include "config.h"
#include "PlatformPathWinCE.h"
#include "AffineTransform.h"
#include "FloatRect.h"
#include "GraphicsContext.h"
#include "Path.h"
#include "WinCEGraphicsExtras.h"
#include <wtf/MathExtras.h>
#include <wtf/OwnPtr.h>
#include <wtf/text/WTFString.h>
#include <windows.h>
namespace WebCore {
// Implemented in GraphicsContextWinCE.cpp
void getEllipsePointByAngle(double angle, double a, double b, float& x, float& y);
static void quadCurve(int segments, Vector<PathPoint>& pts, const PathPoint* control)
{
const float step = 1.0 / segments;
register float tA = 0.0;
register float tB = 1.0;
float c1x = control[0].x();
float c1y = control[0].y();
float c2x = control[1].x();
float c2y = control[1].y();
float c3x = control[2].x();
float c3y = control[2].y();
const int offset = pts.size();
pts.resize(offset + segments);
PathPoint pp;
pp.m_x = c1x;
pp.m_y = c1y;
for (int i = 1; i < segments; ++i) {
tA += step;
tB -= step;
const float a = tB * tB;
const float b = 2.0 * tA * tB;
const float c = tA * tA;
pp.m_x = c1x * a + c2x * b + c3x * c;
pp.m_y = c1y * a + c2y * b + c3y * c;
pts[offset + i - 1] = pp;
}
pp.m_x = c3x;
pp.m_y = c3y;
pts[offset + segments - 1] = pp;
}
static inline void bezier(int segments, Vector<PathPoint>& pts, const PathPoint* control)
{
const float step = 1.0 / segments;
register float tA = 0.0;
register float tB = 1.0;
float c1x = control[0].x();
float c1y = control[0].y();
float c2x = control[1].x();
float c2y = control[1].y();
float c3x = control[2].x();
float c3y = control[2].y();
float c4x = control[3].x();
float c4y = control[3].y();
const int offset = pts.size();
pts.resize(offset + segments);
PathPoint pp;
pp.m_x = c1x;
pp.m_y = c1y;
for (int i = 1; i < segments; ++i) {
tA += step;
tB -= step;
const float tAsq = tA * tA;
const float tBsq = tB * tB;
const float a = tBsq * tB;
const float b = 3.0 * tA * tBsq;
const float c = 3.0 * tB * tAsq;
const float d = tAsq * tA;
pp.m_x = c1x * a + c2x * b + c3x * c + c4x * d;
pp.m_y = c1y * a + c2y * b + c3y * c + c4y * d;
pts[offset + i - 1] = pp;
}
pp.m_x = c4x;
pp.m_y = c4y;
pts[offset + segments - 1] = pp;
}
static bool containsPoint(const FloatRect& r, const FloatPoint& p)
{
return p.x() >= r.x() && p.y() >= r.y() && p.x() < r.maxX() && p.y() < r.maxY();
}
static void normalizeAngle(float& angle)
{
angle = fmod(angle, 2 * piFloat);
if (angle < 0)
angle += 2 * piFloat;
if (angle < 0.00001f)
angle = 0;
}
static void transformArcPoint(float& x, float& y, const FloatPoint& c)
{
x += c.x();
y += c.y();
}
static void inflateRectToContainPoint(FloatRect& r, float x, float y)
{
if (r.isEmpty()) {
r.setX(x);
r.setY(y);
r.setSize(FloatSize(1, 1));
return;
}
if (x < r.x()) {
r.setWidth(r.maxX() - x);
r.setX(x);
} else {
float w = x - r.x() + 1;
if (w > r.width())
r.setWidth(w);
}
if (y < r.y()) {
r.setHeight(r.maxY() - y);
r.setY(y);
} else {
float h = y - r.y() + 1;
if (h > r.height())
r.setHeight(h);
}
}
// return 0-based value: 0 - first Quadrant ( 0 - 90 degree)
static inline int quadrant(const PathPoint& point, const PathPoint& origin)
{
return point.m_x < origin.m_x ?
(point.m_y < origin.m_y ? 2 : 1)
: (point.m_y < origin.m_y ? 3 : 0);
}
static inline bool isQuadrantOnLeft(int q) { return q == 1 || q == 2; }
static inline bool isQuadrantOnRight(int q) { return q == 0 || q == 3; }
static inline bool isQuadrantOnTop(int q) { return q == 2 || q == 3; }
static inline bool isQuadrantOnBottom(int q) { return q == 0 || q == 1; }
static inline int nextQuadrant(int q) { return q == 3 ? 0 : q + 1; }
static inline int quadrantDiff(int q1, int q2)
{
int d = q1 - q2;
while (d < 0)
d += 4;
return d;
}
struct PathVector {
float m_x;
float m_y;
PathVector() : m_x(0), m_y(0) {}
PathVector(float x, float y) : m_x(x), m_y(y) {}
double angle() const { return atan2(m_y, m_x); }
operator double () const { return angle(); }
double length() const { return _hypot(m_x, m_y); }
};
PathVector operator-(const PathPoint& p1, const PathPoint& p2)
{
return PathVector(p1.m_x - p2.m_x, p1.m_y - p2.m_y);
}
static void addArcPoint(PathPolygon& poly, const PathPoint& center, const PathPoint& radius, double angle)
{
PathPoint p;
getEllipsePointByAngle(angle, radius.m_x, radius.m_y, p.m_x, p.m_y);
transformArcPoint(p.m_x, p.m_y, center);
if (poly.isEmpty() || poly.last() != p)
poly.append(p);
}
static void addArcPoints(PathPolygon& poly, const PlatformPathElement::ArcTo& data)
{
const PathPoint& startPoint = poly.last();
double curAngle = startPoint - data.m_center;
double endAngle = data.m_end - data.m_center;
double angleStep = 2. / std::max(data.m_radius.m_x, data.m_radius.m_y);
if (data.m_clockwise) {
if (endAngle <= curAngle || startPoint == data.m_end)
endAngle += 2 * piDouble;
} else {
angleStep = -angleStep;
if (endAngle >= curAngle || startPoint == data.m_end)
endAngle -= 2 * piDouble;
}
for (curAngle += angleStep; data.m_clockwise ? curAngle < endAngle : curAngle > endAngle; curAngle += angleStep)
addArcPoint(poly, data.m_center, data.m_radius, curAngle);
if (poly.isEmpty() || poly.last() != data.m_end)
poly.append(data.m_end);
}
static void drawPolygons(HDC dc, const Vector<PathPolygon>& polygons, bool fill, const AffineTransform* transformation)
{
for (Vector<PathPolygon>::const_iterator i = polygons.begin(); i != polygons.end(); ++i) {
int npoints = i->size();
if (!npoints)
continue;
POINT* winPoints = 0;
if (fill) {
if (npoints > 2)
winPoints = new POINT[npoints + 1];
} else
winPoints = new POINT[npoints];
if (winPoints) {
if (transformation) {
for (int i2 = 0; i2 < npoints; ++i2) {
FloatPoint trPoint = transformation->mapPoint(i->at(i2));
winPoints[i2].x = stableRound(trPoint.x());
winPoints[i2].y = stableRound(trPoint.y());
}
} else {
for (int i2 = 0; i2 < npoints; ++i2) {
winPoints[i2].x = stableRound(i->at(i2).x());
winPoints[i2].y = stableRound(i->at(i2).y());
}
}
if (fill && winPoints[npoints - 1] != winPoints[0]) {
winPoints[npoints].x = winPoints[0].x;
winPoints[npoints].y = winPoints[0].y;
++npoints;
}
if (fill)
::Polygon(dc, winPoints, npoints);
else
::Polyline(dc, winPoints, npoints);
delete[] winPoints;
}
}
}
int PlatformPathElement::numControlPoints() const
{
switch (m_type) {
case PathMoveTo:
case PathLineTo:
return 1;
case PathQuadCurveTo:
case PathArcTo:
return 2;
case PathBezierCurveTo:
return 3;
default:
ASSERT(m_type == PathCloseSubpath);
return 0;
}
}
int PlatformPathElement::numPoints() const
{
switch (m_type) {
case PathMoveTo:
case PathLineTo:
case PathArcTo:
return 1;
case PathQuadCurveTo:
return 2;
case PathBezierCurveTo:
return 3;
default:
ASSERT(m_type == PathCloseSubpath);
return 0;
}
}
void PathPolygon::move(const FloatSize& offset)
{
for (Vector<PathPoint>::iterator i = begin(); i < end(); ++i)
i->move(offset);
}
void PathPolygon::transform(const AffineTransform& t)
{
for (Vector<PathPoint>::iterator i = begin(); i < end(); ++i)
*i = t.mapPoint(*i);
}
bool PathPolygon::contains(const FloatPoint& point) const
{
if (size() < 3)
return false;
// Test intersections between the polygon and the vertical line: x = point.x()
int intersected = 0;
const PathPoint* point1 = &last();
Vector<PathPoint>::const_iterator last = end();
// wasNegative: -1 means unknown, 0 means false, 1 means true.
int wasNegative = -1;
for (Vector<PathPoint>::const_iterator i = begin(); i != last; ++i) {
const PathPoint& point2 = *i;
if (point1->x() != point.x()) {
if (point2.x() == point.x()) {
// We are getting on the vertical line
wasNegative = point1->x() < point.x() ? 1 : 0;
} else if (point2.x() < point.x() != point1->x() < point.x()) {
float y = (point2.y() - point1->y()) / (point2.x() - point1->x()) * (point.x() - point1->x()) + point1->y();
if (y >= point.y())
++intersected;
}
} else {
// We were on the vertical line
// handle special case
if (point1->y() == point.y())
return true;
if (point1->y() > point.y()) {
if (point2.x() == point.x()) {
// see if the point is on this segment
if (point2.y() <= point.y())
return true;
// We are still on the line
} else {
// We are leaving the line now.
// We have to get back to see which side we come from. If we come from
// the same side we are leaving, no intersection should be counted
if (wasNegative < 0) {
Vector<PathPoint>::const_iterator jLast = i;
Vector<PathPoint>::const_iterator j = i;
do {
if (j == begin())
j = last;
else
--j;
if (j->x() != point.x()) {
if (j->x() > point.x())
wasNegative = 0;
else
wasNegative = 1;
break;
}
} while (j != jLast);
if (wasNegative < 0)
return false;
}
if (wasNegative ? point2.x() > point.x() : point2.x() < point.x())
++intersected;
}
} else if (point2.x() == point.x() && point2.y() >= point.y())
return true;
}
point1 = &point2;
}
return intersected & 1;
}
void PlatformPathElement::move(const FloatSize& offset)
{
int n = numControlPoints();
for (int i = 0; i < n; ++i)
m_data.m_points[i].move(offset);
}
void PlatformPathElement::transform(const AffineTransform& t)
{
int n = numControlPoints();
for (int i = 0; i < n; ++i) {
FloatPoint p = t.mapPoint(m_data.m_points[i]);
m_data.m_points[i].set(p.x(), p.y());
}
}
void PlatformPathElement::inflateRectToContainMe(FloatRect& r, const FloatPoint& lastPoint) const
{
if (m_type == PathArcTo) {
const ArcTo& data = m_data.m_arcToData;
PathPoint startPoint;
startPoint = lastPoint;
PathPoint endPoint = data.m_end;
if (!data.m_clockwise)
std::swap(startPoint, endPoint);
int q0 = quadrant(startPoint, data.m_center);
int q1 = quadrant(endPoint, data.m_center);
bool containsExtremes[4] = { false }; // bottom, left, top, right
static const PathPoint extremeVectors[4] = { { 0, 1 }, { -1, 0 }, { 0, -1 }, { 1, 0 } };
if (q0 == q1) {
if (startPoint.m_x == endPoint.m_x || isQuadrantOnBottom(q0) != startPoint.m_x > endPoint.m_x) {
for (int i = 0; i < 4; ++i)
containsExtremes[i] = true;
}
} else {
int extreme = q0;
int diff = quadrantDiff(q1, q0);
for (int i = 0; i < diff; ++i) {
containsExtremes[extreme] = true;
extreme = nextQuadrant(extreme);
}
}
inflateRectToContainPoint(r, startPoint.m_x, startPoint.m_y);
inflateRectToContainPoint(r, endPoint.m_x, endPoint.m_y);
for (int i = 0; i < 4; ++i) {
if (containsExtremes[i])
inflateRectToContainPoint(r, data.m_center.m_x + data.m_radius.m_x * extremeVectors[i].m_x, data.m_center.m_y + data.m_radius.m_y * extremeVectors[i].m_y);
}
} else {
int n = numPoints();
for (int i = 0; i < n; ++i)
inflateRectToContainPoint(r, m_data.m_points[i].m_x, m_data.m_points[i].m_y);
}
}
PathElementType PlatformPathElement::type() const
{
switch (m_type) {
case PathMoveTo:
return PathElementMoveToPoint;
case PathLineTo:
return PathElementAddLineToPoint;
case PathArcTo:
// FIXME: there's no arcTo type for PathElement
return PathElementAddLineToPoint;
// return PathElementAddQuadCurveToPoint;
case PathQuadCurveTo:
return PathElementAddQuadCurveToPoint;
case PathBezierCurveTo:
return PathElementAddCurveToPoint;
default:
ASSERT(m_type == PathCloseSubpath);
return PathElementCloseSubpath;
}
}
PlatformPath::PlatformPath()
: m_penLifted(true)
{
m_currentPoint.clear();
}
void PlatformPath::ensureSubpath()
{
if (m_penLifted) {
m_penLifted = false;
m_subpaths.append(PathPolygon());
m_subpaths.last().append(m_currentPoint);
} else
ASSERT(!m_subpaths.isEmpty());
}
void PlatformPath::addToSubpath(const PlatformPathElement& e)
{
if (e.platformType() == PlatformPathElement::PathMoveTo) {
m_penLifted = true;
m_currentPoint = e.pointAt(0);
} else if (e.platformType() == PlatformPathElement::PathCloseSubpath) {
m_penLifted = true;
if (!m_subpaths.isEmpty()) {
if (m_currentPoint != m_subpaths.last()[0]) {
// According to W3C, we have to draw a line from current point to the initial point
m_subpaths.last().append(m_subpaths.last()[0]);
m_currentPoint = m_subpaths.last()[0];
}
} else
m_currentPoint.clear();
} else {
ensureSubpath();
switch (e.platformType()) {
case PlatformPathElement::PathLineTo:
m_subpaths.last().append(e.pointAt(0));
break;
case PlatformPathElement::PathArcTo:
addArcPoints(m_subpaths.last(), e.arcTo());
break;
case PlatformPathElement::PathQuadCurveTo:
{
PathPoint control[] = {
m_currentPoint,
e.pointAt(0),
e.pointAt(1),
};
// FIXME: magic number?
quadCurve(50, m_subpaths.last(), control);
}
break;
case PlatformPathElement::PathBezierCurveTo:
{
PathPoint control[] = {
m_currentPoint,
e.pointAt(0),
e.pointAt(1),
e.pointAt(2),
};
// FIXME: magic number?
bezier(100, m_subpaths.last(), control);
}
break;
default:
ASSERT_NOT_REACHED();
break;
}
m_currentPoint = m_subpaths.last().last();
}
}
void PlatformPath::append(const PlatformPathElement& e)
{
e.inflateRectToContainMe(m_boundingRect, lastPoint());
addToSubpath(e);
m_elements.append(e);
}
void PlatformPath::append(const PlatformPath& p)
{
const PlatformPathElements& e = p.elements();
for (PlatformPathElements::const_iterator it(e.begin()); it != e.end(); ++it) {
addToSubpath(*it);
it->inflateRectToContainMe(m_boundingRect, lastPoint());
m_elements.append(*it);
}
}
void PlatformPath::clear()
{
m_elements.clear();
m_boundingRect = FloatRect();
m_subpaths.clear();
m_currentPoint.clear();
m_penLifted = true;
}
void PlatformPath::strokePath(HDC dc, const AffineTransform* transformation) const
{
drawPolygons(dc, m_subpaths, false, transformation);
}
void PlatformPath::fillPath(HDC dc, const AffineTransform* transformation) const
{
HGDIOBJ oldPen = SelectObject(dc, GetStockObject(NULL_PEN));
drawPolygons(dc, m_subpaths, true, transformation);
SelectObject(dc, oldPen);
}
void PlatformPath::translate(const FloatSize& size)
{
for (PlatformPathElements::iterator it(m_elements.begin()); it != m_elements.end(); ++it)
it->move(size);
m_boundingRect.move(size);
for (Vector<PathPolygon>::iterator it = m_subpaths.begin(); it != m_subpaths.end(); ++it)
it->move(size);
}
void PlatformPath::transform(const AffineTransform& t)
{
for (PlatformPathElements::iterator it(m_elements.begin()); it != m_elements.end(); ++it)
it->transform(t);
m_boundingRect = t.mapRect(m_boundingRect);
for (Vector<PathPolygon>::iterator it = m_subpaths.begin(); it != m_subpaths.end(); ++it)
it->transform(t);
}
bool PlatformPath::contains(const FloatPoint& point, WindRule rule) const
{
// optimization: check the bounding rect first
if (!containsPoint(m_boundingRect, point))
return false;
for (Vector<PathPolygon>::const_iterator i = m_subpaths.begin(); i != m_subpaths.end(); ++i) {
if (i->contains(point))
return true;
}
return false;
}
void PlatformPath::moveTo(const FloatPoint& point)
{
PlatformPathElement::MoveTo data = { { point.x(), point.y() } };
PlatformPathElement pe(data);
append(pe);
}
void PlatformPath::addLineTo(const FloatPoint& point)
{
PlatformPathElement::LineTo data = { { point.x(), point.y() } };
PlatformPathElement pe(data);
append(pe);
}
void PlatformPath::addQuadCurveTo(const FloatPoint& cp, const FloatPoint& p)
{
PlatformPathElement::QuadCurveTo data = { { cp.x(), cp.y() }, { p.x(), p.y() } };
PlatformPathElement pe(data);
append(pe);
}
void PlatformPath::addBezierCurveTo(const FloatPoint& cp1, const FloatPoint& cp2, const FloatPoint& p)
{
PlatformPathElement::BezierCurveTo data = { { cp1.x(), cp1.y() }, { cp2.x(), cp2.y() }, { p.x(), p.y() } };
PlatformPathElement pe(data);
append(pe);
}
void PlatformPath::addArcTo(const FloatPoint& fp1, const FloatPoint& fp2, float radius)
{
const PathPoint& p0 = m_currentPoint;
PathPoint p1;
p1 = fp1;
PathPoint p2;
p2 = fp2;
if (!radius || p0 == p1 || p1 == p2) {
addLineTo(p1);
return;
}
PathVector v01 = p0 - p1;
PathVector v21 = p2 - p1;
// sin(A - B) = sin(A) * cos(B) - sin(B) * cos(A)
double cross = v01.m_x * v21.m_y - v01.m_y * v21.m_x;
if (fabs(cross) < 1E-10) {
// on one line
addLineTo(p1);
return;
}
double d01 = v01.length();
double d21 = v21.length();
double angle = (piDouble - fabs(asin(cross / (d01 * d21)))) * 0.5;
double span = radius * tan(angle);
double rate = span / d01;
PathPoint startPoint;
startPoint.m_x = p1.m_x + v01.m_x * rate;
startPoint.m_y = p1.m_y + v01.m_y * rate;
addLineTo(startPoint);
PathPoint endPoint;
rate = span / d21;
endPoint.m_x = p1.m_x + v21.m_x * rate;
endPoint.m_y = p1.m_y + v21.m_y * rate;
PathPoint midPoint;
midPoint.m_x = (startPoint.m_x + endPoint.m_x) * 0.5;
midPoint.m_y = (startPoint.m_y + endPoint.m_y) * 0.5;
PathVector vm1 = midPoint - p1;
double dm1 = vm1.length();
double d = _hypot(radius, span);
PathPoint centerPoint;
rate = d / dm1;
centerPoint.m_x = p1.m_x + vm1.m_x * rate;
centerPoint.m_y = p1.m_y + vm1.m_y * rate;
PlatformPathElement::ArcTo data = {
endPoint,
centerPoint,
{ radius, radius },
cross < 0
};
PlatformPathElement pe(data);
append(pe);
}
void PlatformPath::closeSubpath()
{
PlatformPathElement pe;
append(pe);
}
// add a circular arc centred at p with radius r from start angle sar (radians) to end angle ear
void PlatformPath::addEllipse(const FloatPoint& p, float a, float b, float sar, float ear, bool anticlockwise)
{
float startX, startY, endX, endY;
normalizeAngle(sar);
normalizeAngle(ear);
getEllipsePointByAngle(sar, a, b, startX, startY);
getEllipsePointByAngle(ear, a, b, endX, endY);
transformArcPoint(startX, startY, p);
transformArcPoint(endX, endY, p);
FloatPoint start(startX, startY);
moveTo(start);
PlatformPathElement::ArcTo data = { { endX, endY }, { p.x(), p.y() }, { a, b }, !anticlockwise };
PlatformPathElement pe(data);
append(pe);
}
void PlatformPath::addRect(const FloatRect& r)
{
moveTo(r.location());
float right = r.maxX() - 1;
float bottom = r.maxY() - 1;
addLineTo(FloatPoint(right, r.y()));
addLineTo(FloatPoint(right, bottom));
addLineTo(FloatPoint(r.x(), bottom));
addLineTo(r.location());
}
void PlatformPath::addEllipse(const FloatRect& r)
{
FloatSize radius(r.width() * 0.5, r.height() * 0.5);
addEllipse(r.location() + radius, radius.width(), radius.height(), 0, 0, true);
}
void PlatformPath::apply(void* info, PathApplierFunction function) const
{
PathElement pelement;
FloatPoint points[3];
pelement.points = points;
for (PlatformPathElements::const_iterator it(m_elements.begin()); it != m_elements.end(); ++it) {
pelement.type = it->type();
int n = it->numPoints();
for (int i = 0; i < n; ++i)
points[i] = it->pointAt(i);
function(info, &pelement);
}
}
} // namespace Webcore
|