1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 721 722 723 724 725 726 727 728 729 730 731 732 733 734 735 736 737 738 739 740 741 742 743 744 745 746 747 748 749 750 751 752 753 754 755 756 757 758 759 760 761 762 763 764 765 766 767 768 769 770 771 772 773 774 775 776 777 778 779 780 781 782 783 784 785 786 787 788 789 790 791 792 793 794 795 796 797 798 799 800 801 802 803 804 805 806 807 808 809 810 811 812 813 814 815 816 817 818 819
|
/*
* Copyright (C) 2011 Apple Inc. All rights reserved.
*
* Redistribution and use in source and binary forms, with or without
* modification, are permitted provided that the following conditions
* are met:
* 1. Redistributions of source code must retain the above copyright
* notice, this list of conditions and the following disclaimer.
* 2. Redistributions in binary form must reproduce the above copyright
* notice, this list of conditions and the following disclaimer in the
* documentation and/or other materials provided with the distribution.
*
* THIS SOFTWARE IS PROVIDED BY APPLE INC. ``AS IS'' AND ANY
* EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
* IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR
* PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL APPLE COMPUTER, INC. OR
* CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL,
* EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO,
* PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR
* PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY
* OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT
* (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE
* OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
*/
#include "config.h"
#include "RenderGrid.h"
#include "LayoutRepainter.h"
#include "NotImplemented.h"
#include "RenderLayer.h"
#include "RenderView.h"
namespace WebCore {
static const int infinity = intMaxForLayoutUnit;
class GridTrack {
public:
GridTrack()
: m_usedBreadth(0)
, m_maxBreadth(0)
{
}
void growUsedBreadth(LayoutUnit growth)
{
ASSERT(growth >= 0);
m_usedBreadth += growth;
}
LayoutUnit usedBreadth() const { return m_usedBreadth; }
void growMaxBreadth(LayoutUnit growth)
{
if (m_maxBreadth == infinity)
m_maxBreadth = m_usedBreadth + growth;
else
m_maxBreadth += growth;
}
LayoutUnit maxBreadthIfNotInfinite() const
{
return (m_maxBreadth == infinity) ? m_usedBreadth : m_maxBreadth;
}
LayoutUnit m_usedBreadth;
LayoutUnit m_maxBreadth;
};
class RenderGrid::GridIterator {
WTF_MAKE_NONCOPYABLE(GridIterator);
public:
// |direction| is the direction that is fixed to |fixedTrackIndex| so e.g
// GridIterator(m_grid, ForColumns, 1) will walk over the rows of the 2nd column.
GridIterator(const Vector<Vector<Vector<RenderBox*, 1> > >& grid, TrackSizingDirection direction, size_t fixedTrackIndex)
: m_grid(grid)
, m_direction(direction)
, m_rowIndex((direction == ForColumns) ? 0 : fixedTrackIndex)
, m_columnIndex((direction == ForColumns) ? fixedTrackIndex : 0)
, m_childIndex(0)
{
ASSERT(m_rowIndex < m_grid.size());
ASSERT(m_columnIndex < m_grid[0].size());
}
RenderBox* nextGridItem()
{
if (!m_grid.size())
return 0;
size_t& varyingTrackIndex = (m_direction == ForColumns) ? m_rowIndex : m_columnIndex;
const size_t endOfVaryingTrackIndex = (m_direction == ForColumns) ? m_grid.size() : m_grid[0].size();
for (; varyingTrackIndex < endOfVaryingTrackIndex; ++varyingTrackIndex) {
const Vector<RenderBox*>& children = m_grid[m_rowIndex][m_columnIndex];
if (m_childIndex < children.size())
return children[m_childIndex++];
m_childIndex = 0;
}
return 0;
}
PassOwnPtr<GridCoordinate> nextEmptyGridArea()
{
if (m_grid.isEmpty())
return nullptr;
size_t& varyingTrackIndex = (m_direction == ForColumns) ? m_rowIndex : m_columnIndex;
const size_t endOfVaryingTrackIndex = (m_direction == ForColumns) ? m_grid.size() : m_grid[0].size();
for (; varyingTrackIndex < endOfVaryingTrackIndex; ++varyingTrackIndex) {
const Vector<RenderBox*>& children = m_grid[m_rowIndex][m_columnIndex];
if (children.isEmpty()) {
OwnPtr<GridCoordinate> result = adoptPtr(new GridCoordinate(GridSpan(m_rowIndex, m_rowIndex), GridSpan(m_columnIndex, m_columnIndex)));
// Advance the iterator to avoid an infinite loop where we would return the same grid area over and over.
++varyingTrackIndex;
return result.release();
}
}
return nullptr;
}
private:
const Vector<Vector<Vector<RenderBox*, 1> > >& m_grid;
TrackSizingDirection m_direction;
size_t m_rowIndex;
size_t m_columnIndex;
size_t m_childIndex;
};
RenderGrid::RenderGrid(Element* element)
: RenderBlock(element)
{
// All of our children must be block level.
setChildrenInline(false);
}
RenderGrid::~RenderGrid()
{
}
void RenderGrid::layoutBlock(bool relayoutChildren, LayoutUnit)
{
ASSERT(needsLayout());
if (!relayoutChildren && simplifiedLayout())
return;
// FIXME: Much of this method is boiler plate that matches RenderBox::layoutBlock and Render*FlexibleBox::layoutBlock.
// It would be nice to refactor some of the duplicate code.
LayoutRepainter repainter(*this, checkForRepaintDuringLayout());
LayoutStateMaintainer statePusher(view(), this, locationOffset(), hasTransform() || hasReflection() || style()->isFlippedBlocksWritingMode());
// Regions changing widths can force us to relayout our children.
RenderFlowThread* flowThread = flowThreadContainingBlock();
if (logicalWidthChangedInRegions(flowThread))
relayoutChildren = true;
if (updateRegionsAndShapesBeforeChildLayout(flowThread))
relayoutChildren = true;
LayoutSize previousSize = size();
setLogicalHeight(0);
updateLogicalWidth();
layoutGridItems();
LayoutUnit oldClientAfterEdge = clientLogicalBottom();
updateLogicalHeight();
if (size() != previousSize)
relayoutChildren = true;
layoutPositionedObjects(relayoutChildren || isRoot());
updateRegionsAndShapesAfterChildLayout(flowThread);
computeOverflow(oldClientAfterEdge);
statePusher.pop();
updateLayerTransform();
// Update our scroll information if we're overflow:auto/scroll/hidden now that we know if
// we overflow or not.
updateScrollInfoAfterLayout();
repainter.repaintAfterLayout();
setNeedsLayout(false);
}
void RenderGrid::computeIntrinsicLogicalWidths(LayoutUnit& minLogicalWidth, LayoutUnit& maxLogicalWidth) const
{
const_cast<RenderGrid*>(this)->placeItemsOnGrid();
// FIXME: This is an inefficient way to fill our sizes as it will try every grid areas, when we would
// only want to account for fixed grid tracks and grid items. Also this will be incorrect if we have spanning
// grid items.
for (size_t i = 0; i < gridColumnCount(); ++i) {
const GridTrackSize& trackSize = gridTrackSize(ForColumns, i);
LayoutUnit minTrackBreadth = computePreferredTrackWidth(trackSize.minTrackBreadth(), i);
LayoutUnit maxTrackBreadth = computePreferredTrackWidth(trackSize.maxTrackBreadth(), i);
maxTrackBreadth = std::max(maxTrackBreadth, minTrackBreadth);
minLogicalWidth += minTrackBreadth;
maxLogicalWidth += maxTrackBreadth;
// FIXME: This should add in the scrollbarWidth (e.g. see RenderFlexibleBox).
}
const_cast<RenderGrid*>(this)->clearGrid();
}
void RenderGrid::computePreferredLogicalWidths()
{
ASSERT(preferredLogicalWidthsDirty());
m_minPreferredLogicalWidth = 0;
m_maxPreferredLogicalWidth = 0;
// FIXME: We don't take our own logical width into account. Once we do, we need to make sure
// we apply (and test the interaction with) min-width / max-width.
computeIntrinsicLogicalWidths(m_minPreferredLogicalWidth, m_maxPreferredLogicalWidth);
LayoutUnit borderAndPaddingInInlineDirection = borderAndPaddingLogicalWidth();
m_minPreferredLogicalWidth += borderAndPaddingInInlineDirection;
m_maxPreferredLogicalWidth += borderAndPaddingInInlineDirection;
setPreferredLogicalWidthsDirty(false);
}
LayoutUnit RenderGrid::computePreferredTrackWidth(const Length& length, size_t trackIndex) const
{
if (length.isFixed()) {
// Grid areas don't have borders, margins or paddings so we don't need to account for them.
return length.intValue();
}
if (length.isMinContent()) {
LayoutUnit minContentSize = 0;
GridIterator iterator(m_grid, ForColumns, trackIndex);
while (RenderBox* gridItem = iterator.nextGridItem()) {
// FIXME: We should include the child's fixed margins like RenderFlexibleBox.
minContentSize = std::max(minContentSize, gridItem->minPreferredLogicalWidth());
}
return minContentSize;
}
if (length.isMaxContent()) {
LayoutUnit maxContentSize = 0;
GridIterator iterator(m_grid, ForColumns, trackIndex);
while (RenderBox* gridItem = iterator.nextGridItem()) {
// FIXME: We should include the child's fixed margins like RenderFlexibleBox.
maxContentSize = std::max(maxContentSize, gridItem->maxPreferredLogicalWidth());
}
return maxContentSize;
}
// FIXME: css3-sizing mentions that we should resolve "definite sizes"
// (including <percentage> and calc()) but we don't do it elsewhere.
return 0;
}
void RenderGrid::computedUsedBreadthOfGridTracks(TrackSizingDirection direction, Vector<GridTrack>& columnTracks, Vector<GridTrack>& rowTracks)
{
LayoutUnit availableLogicalSpace = (direction == ForColumns) ? availableLogicalWidth() : availableLogicalHeight(IncludeMarginBorderPadding);
Vector<GridTrack>& tracks = (direction == ForColumns) ? columnTracks : rowTracks;
for (size_t i = 0; i < tracks.size(); ++i) {
GridTrack& track = tracks[i];
const GridTrackSize& trackSize = gridTrackSize(direction, i);
const Length& minTrackBreadth = trackSize.minTrackBreadth();
const Length& maxTrackBreadth = trackSize.maxTrackBreadth();
track.m_usedBreadth = computeUsedBreadthOfMinLength(direction, minTrackBreadth);
track.m_maxBreadth = computeUsedBreadthOfMaxLength(direction, maxTrackBreadth);
track.m_maxBreadth = std::max(track.m_maxBreadth, track.m_usedBreadth);
}
// FIXME: We shouldn't call resolveContentBasedTrackSizingFunctions if we have no min-content / max-content tracks.
resolveContentBasedTrackSizingFunctions(direction, columnTracks, rowTracks, availableLogicalSpace);
if (availableLogicalSpace <= 0)
return;
const size_t tracksSize = tracks.size();
Vector<GridTrack*> tracksForDistribution(tracksSize);
for (size_t i = 0; i < tracksSize; ++i)
tracksForDistribution[i] = tracks.data() + i;
distributeSpaceToTracks(tracksForDistribution, 0, &GridTrack::usedBreadth, &GridTrack::growUsedBreadth, availableLogicalSpace);
}
LayoutUnit RenderGrid::computeUsedBreadthOfMinLength(TrackSizingDirection direction, const Length& trackLength) const
{
if (trackLength.isFixed() || trackLength.isPercent() || trackLength.isViewportPercentage())
return computeUsedBreadthOfSpecifiedLength(direction, trackLength);
ASSERT(trackLength.isMinContent() || trackLength.isMaxContent() || trackLength.isAuto());
return 0;
}
LayoutUnit RenderGrid::computeUsedBreadthOfMaxLength(TrackSizingDirection direction, const Length& trackLength) const
{
if (trackLength.isFixed() || trackLength.isPercent() || trackLength.isViewportPercentage()) {
LayoutUnit computedBreadth = computeUsedBreadthOfSpecifiedLength(direction, trackLength);
// FIXME: We should ASSERT that computedBreadth cannot return infinity but it's currently
// possible. See https://bugs.webkit.org/show_bug.cgi?id=107053
return computedBreadth;
}
ASSERT(trackLength.isMinContent() || trackLength.isMaxContent() || trackLength.isAuto());
return infinity;
}
LayoutUnit RenderGrid::computeUsedBreadthOfSpecifiedLength(TrackSizingDirection direction, const Length& trackLength) const
{
// FIXME: We still need to support calc() here (https://webkit.org/b/103761).
ASSERT(trackLength.isFixed() || trackLength.isPercent() || trackLength.isViewportPercentage());
return valueForLength(trackLength, direction == ForColumns ? logicalWidth() : computeContentLogicalHeight(style()->logicalHeight()), view());
}
const GridTrackSize& RenderGrid::gridTrackSize(TrackSizingDirection direction, size_t i) const
{
const Vector<GridTrackSize>& trackStyles = (direction == ForColumns) ? style()->gridColumns() : style()->gridRows();
if (i >= trackStyles.size())
return (direction == ForColumns) ? style()->gridAutoColumns() : style()->gridAutoRows();
return trackStyles[i];
}
static size_t estimatedGridSizeForPosition(const GridPosition& position)
{
if (position.isAuto())
return 1;
return std::max(position.integerPosition(), 1);
}
size_t RenderGrid::maximumIndexInDirection(TrackSizingDirection direction) const
{
const Vector<GridTrackSize>& trackStyles = (direction == ForColumns) ? style()->gridColumns() : style()->gridRows();
size_t maximumIndex = std::max<size_t>(1, trackStyles.size());
for (RenderBox* child = firstChildBox(); child; child = child->nextSiblingBox()) {
// This function bypasses the cache (cachedGridCoordinate()) as it is used to build it.
// Also we can't call resolveGridPositionsFromStyle here as it assumes that the grid is build and we are in
// the middle of building it. However we should be able to share more code with the previous logic (FIXME).
const GridPosition& initialPosition = (direction == ForColumns) ? child->style()->gridItemStart() : child->style()->gridItemBefore();
const GridPosition& finalPosition = (direction == ForColumns) ? child->style()->gridItemEnd() : child->style()->gridItemAfter();
size_t estimatedSizeForInitialPosition = estimatedGridSizeForPosition(initialPosition);
size_t estimatedSizeForFinalPosition = estimatedGridSizeForPosition(finalPosition);
ASSERT(estimatedSizeForInitialPosition);
ASSERT(estimatedSizeForFinalPosition);
maximumIndex = std::max(maximumIndex, estimatedSizeForInitialPosition);
maximumIndex = std::max(maximumIndex, estimatedSizeForFinalPosition);
}
return maximumIndex;
}
LayoutUnit RenderGrid::logicalContentHeightForChild(RenderBox* child, Vector<GridTrack>& columnTracks)
{
// FIXME: We shouldn't force a layout every time this function is called but
// 1) Return computeLogicalHeight's value if it's available. Unfortunately computeLogicalHeight
// doesn't return if the logical height is available so would need to be changed.
// 2) Relayout if the column track's used breadth changed OR the logical height is unavailable.
if (!child->needsLayout())
child->setNeedsLayout(true, MarkOnlyThis);
child->setOverrideContainingBlockContentLogicalWidth(gridAreaBreadthForChild(child, ForColumns, columnTracks));
// If |child| has a percentage logical height, we shouldn't let it override its intrinsic height, which is
// what we are interested in here. Thus we need to set the override logical height to -1 (no possible resolution).
child->setOverrideContainingBlockContentLogicalHeight(-1);
child->layout();
return child->logicalHeight();
}
LayoutUnit RenderGrid::minContentForChild(RenderBox* child, TrackSizingDirection direction, Vector<GridTrack>& columnTracks)
{
bool hasOrthogonalWritingMode = child->isHorizontalWritingMode() != isHorizontalWritingMode();
// FIXME: Properly support orthogonal writing mode.
if (hasOrthogonalWritingMode)
return 0;
if (direction == ForColumns) {
// FIXME: It's unclear if we should return the intrinsic width or the preferred width.
// See http://lists.w3.org/Archives/Public/www-style/2013Jan/0245.html
return child->minPreferredLogicalWidth();
}
return logicalContentHeightForChild(child, columnTracks);
}
LayoutUnit RenderGrid::maxContentForChild(RenderBox* child, TrackSizingDirection direction, Vector<GridTrack>& columnTracks)
{
bool hasOrthogonalWritingMode = child->isHorizontalWritingMode() != isHorizontalWritingMode();
// FIXME: Properly support orthogonal writing mode.
if (hasOrthogonalWritingMode)
return LayoutUnit();
if (direction == ForColumns) {
// FIXME: It's unclear if we should return the intrinsic width or the preferred width.
// See http://lists.w3.org/Archives/Public/www-style/2013Jan/0245.html
return child->maxPreferredLogicalWidth();
}
return logicalContentHeightForChild(child, columnTracks);
}
void RenderGrid::resolveContentBasedTrackSizingFunctions(TrackSizingDirection direction, Vector<GridTrack>& columnTracks, Vector<GridTrack>& rowTracks, LayoutUnit& availableLogicalSpace)
{
// FIXME: Split the grid tracks once we support fractions (step 1 of the algorithm).
Vector<GridTrack>& tracks = (direction == ForColumns) ? columnTracks : rowTracks;
// FIXME: Per step 2 of the specification, we should order the grid items by increasing span.
for (RenderBox* child = firstChildBox(); child; child = child->nextSiblingBox()) {
resolveContentBasedTrackSizingFunctionsForItems(direction, columnTracks, rowTracks, child, &GridTrackSize::hasMinOrMaxContentMinTrackBreadth, &RenderGrid::minContentForChild, &GridTrack::usedBreadth, &GridTrack::growUsedBreadth);
resolveContentBasedTrackSizingFunctionsForItems(direction, columnTracks, rowTracks, child, &GridTrackSize::hasMaxContentMinTrackBreadth, &RenderGrid::maxContentForChild, &GridTrack::usedBreadth, &GridTrack::growUsedBreadth);
resolveContentBasedTrackSizingFunctionsForItems(direction, columnTracks, rowTracks, child, &GridTrackSize::hasMinOrMaxContentMaxTrackBreadth, &RenderGrid::minContentForChild, &GridTrack::maxBreadthIfNotInfinite, &GridTrack::growMaxBreadth);
resolveContentBasedTrackSizingFunctionsForItems(direction, columnTracks, rowTracks, child, &GridTrackSize::hasMaxContentMaxTrackBreadth, &RenderGrid::maxContentForChild, &GridTrack::maxBreadthIfNotInfinite, &GridTrack::growMaxBreadth);
}
for (size_t i = 0; i < tracks.size(); ++i) {
GridTrack& track = tracks[i];
if (track.m_maxBreadth == infinity)
track.m_maxBreadth = track.m_usedBreadth;
availableLogicalSpace -= track.m_usedBreadth;
}
}
void RenderGrid::resolveContentBasedTrackSizingFunctionsForItems(TrackSizingDirection direction, Vector<GridTrack>& columnTracks, Vector<GridTrack>& rowTracks, RenderBox* gridItem, FilterFunction filterFunction, SizingFunction sizingFunction, AccumulatorGetter trackGetter, AccumulatorGrowFunction trackGrowthFunction)
{
const GridCoordinate coordinate = cachedGridCoordinate(gridItem);
const size_t initialTrackIndex = (direction == ForColumns) ? coordinate.columns.initialPositionIndex : coordinate.rows.initialPositionIndex;
const size_t finalTrackIndex = (direction == ForColumns) ? coordinate.columns.finalPositionIndex : coordinate.rows.finalPositionIndex;
Vector<GridTrack*> tracks;
for (size_t trackIndex = initialTrackIndex; trackIndex <= finalTrackIndex; ++trackIndex) {
const GridTrackSize& trackSize = gridTrackSize(direction, trackIndex);
if (!(trackSize.*filterFunction)())
continue;
GridTrack& track = (direction == ForColumns) ? columnTracks[trackIndex] : rowTracks[trackIndex];
tracks.append(&track);
}
LayoutUnit additionalBreadthSpace = (this->*sizingFunction)(gridItem, direction, columnTracks);
for (size_t trackIndexForSpace = initialTrackIndex; trackIndexForSpace <= finalTrackIndex; ++trackIndexForSpace) {
GridTrack& track = (direction == ForColumns) ? columnTracks[trackIndexForSpace] : rowTracks[trackIndexForSpace];
additionalBreadthSpace -= (track.*trackGetter)();
}
// FIXME: We should pass different values for |tracksForGrowthAboveMaxBreadth|.
distributeSpaceToTracks(tracks, &tracks, trackGetter, trackGrowthFunction, additionalBreadthSpace);
}
static bool sortByGridTrackGrowthPotential(const GridTrack* track1, const GridTrack* track2)
{
return (track1->m_maxBreadth - track1->m_usedBreadth) < (track2->m_maxBreadth - track2->m_usedBreadth);
}
void RenderGrid::distributeSpaceToTracks(Vector<GridTrack*>& tracks, Vector<GridTrack*>* tracksForGrowthAboveMaxBreadth, AccumulatorGetter trackGetter, AccumulatorGrowFunction trackGrowthFunction, LayoutUnit& availableLogicalSpace)
{
std::sort(tracks.begin(), tracks.end(), sortByGridTrackGrowthPotential);
size_t tracksSize = tracks.size();
Vector<LayoutUnit> updatedTrackBreadths(tracksSize);
for (size_t i = 0; i < tracksSize; ++i) {
GridTrack& track = *tracks[i];
LayoutUnit availableLogicalSpaceShare = availableLogicalSpace / (tracksSize - i);
LayoutUnit trackBreadth = (tracks[i]->*trackGetter)();
LayoutUnit growthShare = std::min(availableLogicalSpaceShare, track.m_maxBreadth - trackBreadth);
updatedTrackBreadths[i] = trackBreadth + growthShare;
availableLogicalSpace -= growthShare;
}
if (availableLogicalSpace > 0 && tracksForGrowthAboveMaxBreadth) {
tracksSize = tracksForGrowthAboveMaxBreadth->size();
for (size_t i = 0; i < tracksSize; ++i) {
LayoutUnit growthShare = availableLogicalSpace / (tracksSize - i);
updatedTrackBreadths[i] += growthShare;
availableLogicalSpace -= growthShare;
}
}
for (size_t i = 0; i < tracksSize; ++i) {
LayoutUnit growth = updatedTrackBreadths[i] - (tracks[i]->*trackGetter)();
if (growth >= 0)
(tracks[i]->*trackGrowthFunction)(growth);
}
}
#ifndef NDEBUG
bool RenderGrid::tracksAreWiderThanMinTrackBreadth(TrackSizingDirection direction, const Vector<GridTrack>& tracks)
{
for (size_t i = 0; i < tracks.size(); ++i) {
const GridTrackSize& trackSize = gridTrackSize(direction, i);
const Length& minTrackBreadth = trackSize.minTrackBreadth();
if (computeUsedBreadthOfMinLength(direction, minTrackBreadth) > tracks[i].m_usedBreadth)
return false;
}
return true;
}
#endif
void RenderGrid::growGrid(TrackSizingDirection direction)
{
if (direction == ForColumns) {
const size_t oldColumnSize = m_grid[0].size();
for (size_t row = 0; row < m_grid.size(); ++row)
m_grid[row].grow(oldColumnSize + 1);
} else {
const size_t oldRowSize = m_grid.size();
m_grid.grow(oldRowSize + 1);
m_grid[oldRowSize].grow(m_grid[0].size());
}
}
void RenderGrid::insertItemIntoGrid(RenderBox* child, const GridCoordinate& coordinate)
{
m_grid[coordinate.rows.initialPositionIndex][coordinate.columns.initialPositionIndex].append(child);
m_gridItemCoordinate.set(child, coordinate);
}
void RenderGrid::insertItemIntoGrid(RenderBox* child, size_t rowTrack, size_t columnTrack)
{
const GridSpan& rowSpan = resolveGridPositionsFromAutoPlacementPosition(child, ForRows, rowTrack);
const GridSpan& columnSpan = resolveGridPositionsFromAutoPlacementPosition(child, ForColumns, columnTrack);
insertItemIntoGrid(child, GridCoordinate(rowSpan, columnSpan));
}
void RenderGrid::placeItemsOnGrid()
{
ASSERT(!gridWasPopulated());
ASSERT(m_gridItemCoordinate.isEmpty());
m_grid.grow(maximumIndexInDirection(ForRows));
size_t maximumColumnIndex = maximumIndexInDirection(ForColumns);
for (size_t i = 0; i < m_grid.size(); ++i)
m_grid[i].grow(maximumColumnIndex);
Vector<RenderBox*> autoMajorAxisAutoGridItems;
Vector<RenderBox*> specifiedMajorAxisAutoGridItems;
GridAutoFlow autoFlow = style()->gridAutoFlow();
for (RenderBox* child = firstChildBox(); child; child = child->nextSiblingBox()) {
// FIXME: We never re-resolve positions if the grid is grown during auto-placement which may lead auto / <integer>
// positions to not match the author's intent. The specification is unclear on what should be done in this case.
OwnPtr<GridSpan> rowPositions = resolveGridPositionsFromStyle(child, ForRows);
OwnPtr<GridSpan> columnPositions = resolveGridPositionsFromStyle(child, ForColumns);
if (!rowPositions || !columnPositions) {
GridSpan* majorAxisPositions = (autoPlacementMajorAxisDirection() == ForColumns) ? columnPositions.get() : rowPositions.get();
if (!majorAxisPositions)
autoMajorAxisAutoGridItems.append(child);
else
specifiedMajorAxisAutoGridItems.append(child);
continue;
}
insertItemIntoGrid(child, GridCoordinate(*rowPositions, *columnPositions));
}
ASSERT(gridRowCount() >= style()->gridRows().size());
ASSERT(gridColumnCount() >= style()->gridColumns().size());
if (autoFlow == AutoFlowNone) {
// If we did collect some grid items, they won't be placed thus never laid out.
ASSERT(!autoMajorAxisAutoGridItems.size());
ASSERT(!specifiedMajorAxisAutoGridItems.size());
return;
}
placeSpecifiedMajorAxisItemsOnGrid(specifiedMajorAxisAutoGridItems);
placeAutoMajorAxisItemsOnGrid(autoMajorAxisAutoGridItems);
}
void RenderGrid::placeSpecifiedMajorAxisItemsOnGrid(Vector<RenderBox*> autoGridItems)
{
for (size_t i = 0; i < autoGridItems.size(); ++i) {
OwnPtr<GridSpan> majorAxisPositions = resolveGridPositionsFromStyle(autoGridItems[i], autoPlacementMajorAxisDirection());
GridIterator iterator(m_grid, autoPlacementMajorAxisDirection(), majorAxisPositions->initialPositionIndex);
if (OwnPtr<GridCoordinate> emptyGridArea = iterator.nextEmptyGridArea()) {
insertItemIntoGrid(autoGridItems[i], emptyGridArea->rows.initialPositionIndex, emptyGridArea->columns.initialPositionIndex);
continue;
}
growGrid(autoPlacementMinorAxisDirection());
OwnPtr<GridCoordinate> emptyGridArea = iterator.nextEmptyGridArea();
ASSERT(emptyGridArea);
insertItemIntoGrid(autoGridItems[i], emptyGridArea->rows.initialPositionIndex, emptyGridArea->columns.initialPositionIndex);
}
}
void RenderGrid::placeAutoMajorAxisItemsOnGrid(Vector<RenderBox*> autoGridItems)
{
for (size_t i = 0; i < autoGridItems.size(); ++i)
placeAutoMajorAxisItemOnGrid(autoGridItems[i]);
}
void RenderGrid::placeAutoMajorAxisItemOnGrid(RenderBox* gridItem)
{
OwnPtr<GridSpan> minorAxisPositions = resolveGridPositionsFromStyle(gridItem, autoPlacementMinorAxisDirection());
ASSERT(!resolveGridPositionsFromStyle(gridItem, autoPlacementMajorAxisDirection()));
size_t minorAxisIndex = 0;
if (minorAxisPositions) {
minorAxisIndex = minorAxisPositions->initialPositionIndex;
GridIterator iterator(m_grid, autoPlacementMinorAxisDirection(), minorAxisIndex);
if (OwnPtr<GridCoordinate> emptyGridArea = iterator.nextEmptyGridArea()) {
insertItemIntoGrid(gridItem, emptyGridArea->rows.initialPositionIndex, emptyGridArea->columns.initialPositionIndex);
return;
}
} else {
const size_t endOfMajorAxis = (autoPlacementMajorAxisDirection() == ForColumns) ? gridColumnCount() : gridRowCount();
for (size_t majorAxisIndex = 0; majorAxisIndex < endOfMajorAxis; ++majorAxisIndex) {
GridIterator iterator(m_grid, autoPlacementMajorAxisDirection(), majorAxisIndex);
if (OwnPtr<GridCoordinate> emptyGridArea = iterator.nextEmptyGridArea()) {
insertItemIntoGrid(gridItem, emptyGridArea->rows.initialPositionIndex, emptyGridArea->columns.initialPositionIndex);
return;
}
}
}
// We didn't find an empty grid area so we need to create an extra major axis line and insert our gridItem in it.
const size_t columnIndex = (autoPlacementMajorAxisDirection() == ForColumns) ? m_grid[0].size() : minorAxisIndex;
const size_t rowIndex = (autoPlacementMajorAxisDirection() == ForColumns) ? minorAxisIndex : m_grid.size();
growGrid(autoPlacementMajorAxisDirection());
insertItemIntoGrid(gridItem, rowIndex, columnIndex);
}
RenderGrid::TrackSizingDirection RenderGrid::autoPlacementMajorAxisDirection() const
{
GridAutoFlow flow = style()->gridAutoFlow();
ASSERT(flow != AutoFlowNone);
return (flow == AutoFlowColumn) ? ForColumns : ForRows;
}
RenderGrid::TrackSizingDirection RenderGrid::autoPlacementMinorAxisDirection() const
{
GridAutoFlow flow = style()->gridAutoFlow();
ASSERT(flow != AutoFlowNone);
return (flow == AutoFlowColumn) ? ForRows : ForColumns;
}
void RenderGrid::clearGrid()
{
m_grid.clear();
m_gridItemCoordinate.clear();
}
void RenderGrid::layoutGridItems()
{
placeItemsOnGrid();
Vector<GridTrack> columnTracks(gridColumnCount());
Vector<GridTrack> rowTracks(gridRowCount());
computedUsedBreadthOfGridTracks(ForColumns, columnTracks, rowTracks);
ASSERT(tracksAreWiderThanMinTrackBreadth(ForColumns, columnTracks));
computedUsedBreadthOfGridTracks(ForRows, columnTracks, rowTracks);
ASSERT(tracksAreWiderThanMinTrackBreadth(ForRows, rowTracks));
for (RenderBox* child = firstChildBox(); child; child = child->nextSiblingBox()) {
LayoutPoint childPosition = findChildLogicalPosition(child, columnTracks, rowTracks);
// Because the grid area cannot be styled, we don't need to adjust
// the grid breadth to account for 'box-sizing'.
LayoutUnit oldOverrideContainingBlockContentLogicalWidth = child->hasOverrideContainingBlockLogicalWidth() ? child->overrideContainingBlockContentLogicalWidth() : LayoutUnit();
LayoutUnit oldOverrideContainingBlockContentLogicalHeight = child->hasOverrideContainingBlockLogicalHeight() ? child->overrideContainingBlockContentLogicalHeight() : LayoutUnit();
// FIXME: For children in a content sized track, we clear the overrideContainingBlockContentLogicalHeight
// in minContentForChild / maxContentForChild which means that we will always relayout the child.
LayoutUnit overrideContainingBlockContentLogicalWidth = gridAreaBreadthForChild(child, ForColumns, columnTracks);
LayoutUnit overrideContainingBlockContentLogicalHeight = gridAreaBreadthForChild(child, ForRows, rowTracks);
if (oldOverrideContainingBlockContentLogicalWidth != overrideContainingBlockContentLogicalWidth || oldOverrideContainingBlockContentLogicalHeight != overrideContainingBlockContentLogicalHeight)
child->setNeedsLayout(true, MarkOnlyThis);
child->setOverrideContainingBlockContentLogicalWidth(overrideContainingBlockContentLogicalWidth);
child->setOverrideContainingBlockContentLogicalHeight(overrideContainingBlockContentLogicalHeight);
LayoutRect oldChildRect = child->frameRect();
// FIXME: Grid items should stretch to fill their cells. Once we
// implement grid-{column,row}-align, we can also shrink to fit. For
// now, just size as if we were a regular child.
child->layoutIfNeeded();
// FIXME: Handle border & padding on the grid element.
child->setLogicalLocation(childPosition);
// If the child moved, we have to repaint it as well as any floating/positioned
// descendants. An exception is if we need a layout. In this case, we know we're going to
// repaint ourselves (and the child) anyway.
if (!selfNeedsLayout() && child->checkForRepaintDuringLayout())
child->repaintDuringLayoutIfMoved(oldChildRect);
}
for (size_t i = 0; i < rowTracks.size(); ++i)
setLogicalHeight(logicalHeight() + rowTracks[i].m_usedBreadth);
// FIXME: We should handle min / max logical height.
setLogicalHeight(logicalHeight() + borderAndPaddingLogicalHeight());
clearGrid();
}
RenderGrid::GridCoordinate RenderGrid::cachedGridCoordinate(const RenderBox* gridItem) const
{
ASSERT(m_gridItemCoordinate.contains(gridItem));
return m_gridItemCoordinate.get(gridItem);
}
RenderGrid::GridSpan RenderGrid::resolveGridPositionsFromAutoPlacementPosition(const RenderBox*, TrackSizingDirection, size_t initialPosition) const
{
// FIXME: We don't support spanning with auto positions yet. Once we do, this is wrong. Also we should make
// sure the grid can accomodate the new item as we only grow 1 position in a given direction.
return GridSpan(initialPosition, initialPosition);
}
PassOwnPtr<RenderGrid::GridSpan> RenderGrid::resolveGridPositionsFromStyle(const RenderBox* gridItem, TrackSizingDirection direction) const
{
ASSERT(gridWasPopulated());
const GridPosition& initialPosition = (direction == ForColumns) ? gridItem->style()->gridItemStart() : gridItem->style()->gridItemBefore();
const GridPositionSide initialPositionSide = (direction == ForColumns) ? StartSide : BeforeSide;
const GridPosition& finalPosition = (direction == ForColumns) ? gridItem->style()->gridItemEnd() : gridItem->style()->gridItemAfter();
const GridPositionSide finalPositionSide = (direction == ForColumns) ? EndSide : AfterSide;
if (initialPosition.isAuto() && finalPosition.isAuto()) {
if (style()->gridAutoFlow() == AutoFlowNone)
return adoptPtr(new GridSpan(0, 0));
// We can't get our grid positions without running the auto placement algorithm.
return nullptr;
}
if (initialPosition.isAuto()) {
// Infer the position from the final position ('auto / 1' case).
const size_t finalResolvedPosition = resolveGridPositionFromStyle(finalPosition, finalPositionSide);
return adoptPtr(new GridSpan(finalResolvedPosition, finalResolvedPosition));
}
if (finalPosition.isAuto()) {
// Infer our position from the initial position ('1 / auto' case).
const size_t initialResolvedPosition = resolveGridPositionFromStyle(initialPosition, initialPositionSide);
return adoptPtr(new GridSpan(initialResolvedPosition, initialResolvedPosition));
}
return adoptPtr(new GridSpan(resolveGridPositionFromStyle(initialPosition, initialPositionSide), resolveGridPositionFromStyle(finalPosition, finalPositionSide)));
}
size_t RenderGrid::resolveGridPositionFromStyle(const GridPosition& position, GridPositionSide side) const
{
ASSERT(gridWasPopulated());
// FIXME: Handle other values for grid-{row,column} like ranges or line names.
switch (position.type()) {
case IntegerPosition: {
// FIXME: What does a non-positive integer mean for a column/row?
size_t resolvedPosition = position.isPositive() ? position.integerPosition() - 1 : 0;
if (side == StartSide || side == BeforeSide)
return resolvedPosition;
const size_t endOfTrack = (side == EndSide) ? gridColumnCount() - 1 : gridRowCount() - 1;
ASSERT(endOfTrack >= resolvedPosition);
return endOfTrack - resolvedPosition;
}
case AutoPosition:
// 'auto' depends on the opposite position for resolution (e.g. grid-row: auto / 1).
ASSERT_NOT_REACHED();
return 0;
}
ASSERT_NOT_REACHED();
return 0;
}
LayoutUnit RenderGrid::gridAreaBreadthForChild(const RenderBox* child, TrackSizingDirection direction, const Vector<GridTrack>& tracks) const
{
const GridCoordinate& coordinate = cachedGridCoordinate(child);
const GridSpan& span = (direction == ForColumns) ? coordinate.columns : coordinate.rows;
LayoutUnit gridAreaBreadth = 0;
for (size_t trackIndex = span.initialPositionIndex; trackIndex <= span.finalPositionIndex; ++trackIndex)
gridAreaBreadth += tracks[trackIndex].m_usedBreadth;
return gridAreaBreadth;
}
LayoutPoint RenderGrid::findChildLogicalPosition(RenderBox* child, const Vector<GridTrack>& columnTracks, const Vector<GridTrack>& rowTracks)
{
const GridCoordinate& coordinate = cachedGridCoordinate(child);
// The grid items should be inside the grid container's border box, that's why they need to be shifted.
LayoutPoint offset(borderAndPaddingStart(), borderAndPaddingBefore());
// FIXME: |columnTrack| and |rowTrack| should be smaller than our column / row count.
for (size_t i = 0; i < coordinate.columns.initialPositionIndex && i < columnTracks.size(); ++i)
offset.setX(offset.x() + columnTracks[i].m_usedBreadth);
for (size_t i = 0; i < coordinate.rows.initialPositionIndex && i < rowTracks.size(); ++i)
offset.setY(offset.y() + rowTracks[i].m_usedBreadth);
// FIXME: Handle margins on the grid item.
return offset;
}
const char* RenderGrid::renderName() const
{
if (isFloating())
return "RenderGrid (floating)";
if (isOutOfFlowPositioned())
return "RenderGrid (positioned)";
if (isAnonymous())
return "RenderGrid (generated)";
if (isRelPositioned())
return "RenderGrid (relative positioned)";
return "RenderGrid";
}
} // namespace WebCore
|