File: PolygonShape.cpp

package info (click to toggle)
qtwebkit-opensource-src 5.7.1%2Bdfsg-1
  • links: PTS, VCS
  • area: main
  • in suites: stretch
  • size: 291,692 kB
  • ctags: 268,122
  • sloc: cpp: 1,360,420; python: 70,286; ansic: 42,986; perl: 35,476; ruby: 12,236; objc: 9,465; xml: 8,396; asm: 3,873; yacc: 2,397; sh: 1,647; makefile: 650; lex: 644; java: 110
file content (512 lines) | stat: -rw-r--r-- 20,251 bytes parent folder | download | duplicates (3)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
/*
 * Copyright (C) 2012 Adobe Systems Incorporated. All rights reserved.
 *
 * Redistribution and use in source and binary forms, with or without
 * modification, are permitted provided that the following conditions
 * are met:
 *
 * 1. Redistributions of source code must retain the above
 *    copyright notice, this list of conditions and the following
 *    disclaimer.
 * 2. Redistributions in binary form must reproduce the above
 *    copyright notice, this list of conditions and the following
 *    disclaimer in the documentation and/or other materials
 *    provided with the distribution.
 * 
 * THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS
 * "AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT
 * LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS
 * FOR A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE
 * COPYRIGHT HOLDER OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT,
 * INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES
 * (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR
 * SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
 * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT,
 * STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE)
 * ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED
 * OF THE POSSIBILITY OF SUCH DAMAGE.
 */

#include "config.h"
#include "PolygonShape.h"

#include <wtf/MathExtras.h>

namespace WebCore {

enum EdgeIntersectionType {
    Normal,
    VertexMinY,
    VertexMaxY,
    VertexYBoth
};

struct EdgeIntersection {
    const FloatPolygonEdge* edge;
    FloatPoint point;
    EdgeIntersectionType type;
};

static inline float leftSide(const FloatPoint& vertex1, const FloatPoint& vertex2, const FloatPoint& point)
{
    return ((point.x() - vertex1.x()) * (vertex2.y() - vertex1.y())) - ((vertex2.x() - vertex1.x()) * (point.y() - vertex1.y()));
}

static inline bool isReflexVertex(const FloatPoint& prevVertex, const FloatPoint& vertex, const FloatPoint& nextVertex)
{
    return leftSide(prevVertex, nextVertex, vertex) < 0;
}

static bool computeXIntersection(const FloatPolygonEdge* edgePointer, float y, EdgeIntersection& result)
{
    const FloatPolygonEdge& edge = *edgePointer;

    if (edge.minY() > y || edge.maxY() < y)
        return false;

    const FloatPoint& vertex1 = edge.vertex1();
    const FloatPoint& vertex2 = edge.vertex2();
    float dy = vertex2.y() - vertex1.y();

    float intersectionX;
    EdgeIntersectionType intersectionType;

    if (!dy) {
        intersectionType = VertexYBoth;
        intersectionX = edge.minX();
    } else if (y == edge.minY()) {
        intersectionType = VertexMinY;
        intersectionX = (vertex1.y() < vertex2.y()) ? vertex1.x() : vertex2.x();
    } else if (y == edge.maxY()) {
        intersectionType = VertexMaxY;
        intersectionX = (vertex1.y() > vertex2.y()) ? vertex1.x() : vertex2.x();
    } else {
        intersectionType = Normal;
        intersectionX = ((y - vertex1.y()) * (vertex2.x() - vertex1.x()) / dy) + vertex1.x();
    }

    result.edge = edgePointer;
    result.type = intersectionType;
    result.point.set(intersectionX, y);

    return true;
}

static inline FloatSize inwardEdgeNormal(const FloatPolygonEdge& edge)
{
    FloatSize edgeDelta = edge.vertex2() - edge.vertex1();
    if (!edgeDelta.width())
        return FloatSize((edgeDelta.height() > 0 ? -1 : 1), 0);
    if (!edgeDelta.height())
        return FloatSize(0, (edgeDelta.width() > 0 ? 1 : -1));
    float edgeLength = edgeDelta.diagonalLength();
    return FloatSize(-edgeDelta.height() / edgeLength, edgeDelta.width() / edgeLength);
}

static inline FloatSize outwardEdgeNormal(const FloatPolygonEdge& edge)
{
    return -inwardEdgeNormal(edge);
}

static inline void appendArc(Vector<FloatPoint>& vertices, const FloatPoint& arcCenter, float arcRadius, const FloatPoint& startArcVertex, const FloatPoint& endArcVertex, bool padding)
{
    float startAngle = atan2(startArcVertex.y() - arcCenter.y(), startArcVertex.x() - arcCenter.x());
    float endAngle = atan2(endArcVertex.y() - arcCenter.y(), endArcVertex.x() - arcCenter.x());
    const float twoPI = piFloat * 2;
    if (startAngle < 0)
        startAngle += twoPI;
    if (endAngle < 0)
        endAngle += twoPI;
    float angle = (startAngle > endAngle) ? (startAngle - endAngle) : (startAngle + twoPI - endAngle);
    const float arcSegmentCount = 6; // An even number so that one arc vertex will be eactly arcRadius from arcCenter.
    float arcSegmentAngle =  ((padding) ? -angle : twoPI - angle) / arcSegmentCount;

    vertices.append(startArcVertex);
    for (unsigned i = 1; i < arcSegmentCount; ++i) {
        float angle = startAngle + arcSegmentAngle * i;
        vertices.append(arcCenter + FloatPoint(cos(angle) * arcRadius, sin(angle) * arcRadius));
    }
    vertices.append(endArcVertex);
}

static inline void snapVerticesToLayoutUnitGrid(Vector<FloatPoint>& vertices)
{
    for (unsigned i = 0; i < vertices.size(); ++i)
        vertices[i].set(LayoutUnit(vertices[i].x()).toFloat(), LayoutUnit(vertices[i].y()).toFloat());
}

static inline PassOwnPtr<FloatPolygon> computeShapePaddingBounds(const FloatPolygon& polygon, float padding, WindRule fillRule)
{
    OwnPtr<Vector<FloatPoint> > paddedVertices = adoptPtr(new Vector<FloatPoint>());
    FloatPoint intersection;

    for (unsigned i = 0; i < polygon.numberOfEdges(); ++i) {
        const FloatPolygonEdge& thisEdge = polygon.edgeAt(i);
        const FloatPolygonEdge& prevEdge = thisEdge.previousEdge();
        OffsetPolygonEdge thisOffsetEdge(thisEdge, inwardEdgeNormal(thisEdge) * padding);
        OffsetPolygonEdge prevOffsetEdge(prevEdge, inwardEdgeNormal(prevEdge) * padding);

        if (prevOffsetEdge.intersection(thisOffsetEdge, intersection))
            paddedVertices->append(intersection);
        else if (isReflexVertex(prevEdge.vertex1(), thisEdge.vertex1(), thisEdge.vertex2()))
            appendArc(*paddedVertices, thisEdge.vertex1(), padding, prevOffsetEdge.vertex2(), thisOffsetEdge.vertex1(), true);
    }

    snapVerticesToLayoutUnitGrid(*paddedVertices);
    return adoptPtr(new FloatPolygon(paddedVertices.release(), fillRule));
}

static inline PassOwnPtr<FloatPolygon> computeShapeMarginBounds(const FloatPolygon& polygon, float margin, WindRule fillRule)
{
    OwnPtr<Vector<FloatPoint> > marginVertices = adoptPtr(new Vector<FloatPoint>());
    FloatPoint intersection;

    for (unsigned i = 0; i < polygon.numberOfEdges(); ++i) {
        const FloatPolygonEdge& thisEdge = polygon.edgeAt(i);
        const FloatPolygonEdge& prevEdge = thisEdge.previousEdge();
        OffsetPolygonEdge thisOffsetEdge(thisEdge, outwardEdgeNormal(thisEdge) * margin);
        OffsetPolygonEdge prevOffsetEdge(prevEdge, outwardEdgeNormal(prevEdge) * margin);

        if (prevOffsetEdge.intersection(thisOffsetEdge, intersection))
            marginVertices->append(intersection);
        else
            appendArc(*marginVertices, thisEdge.vertex1(), margin, prevOffsetEdge.vertex2(), thisOffsetEdge.vertex1(), false);
    }

    snapVerticesToLayoutUnitGrid(*marginVertices);
    return adoptPtr(new FloatPolygon(marginVertices.release(), fillRule));
}

const FloatPolygon& PolygonShape::shapePaddingBounds() const
{
    ASSERT(shapePadding() >= 0);
    if (!shapePadding())
        return m_polygon;

    if (!m_paddingBounds)
        m_paddingBounds = computeShapePaddingBounds(m_polygon, shapePadding(), m_polygon.fillRule());

    return *m_paddingBounds;
}

const FloatPolygon& PolygonShape::shapeMarginBounds() const
{
    ASSERT(shapeMargin() >= 0);
    if (!shapeMargin())
        return m_polygon;

    if (!m_marginBounds)
        m_marginBounds = computeShapeMarginBounds(m_polygon, shapeMargin(), m_polygon.fillRule());

    return *m_marginBounds;
}

static inline bool getVertexIntersectionVertices(const EdgeIntersection& intersection, FloatPoint& prevVertex, FloatPoint& thisVertex, FloatPoint& nextVertex)
{
    if (intersection.type != VertexMinY && intersection.type != VertexMaxY)
        return false;

    ASSERT(intersection.edge && intersection.edge->polygon());
    const FloatPolygon& polygon = *(intersection.edge->polygon());
    const FloatPolygonEdge& thisEdge = *(intersection.edge);

    if ((intersection.type == VertexMinY && (thisEdge.vertex1().y() < thisEdge.vertex2().y()))
        || (intersection.type == VertexMaxY && (thisEdge.vertex1().y() > thisEdge.vertex2().y()))) {
        prevVertex = polygon.vertexAt(thisEdge.previousEdge().vertexIndex1());
        thisVertex = polygon.vertexAt(thisEdge.vertexIndex1());
        nextVertex = polygon.vertexAt(thisEdge.vertexIndex2());
    } else {
        prevVertex = polygon.vertexAt(thisEdge.vertexIndex1());
        thisVertex = polygon.vertexAt(thisEdge.vertexIndex2());
        nextVertex = polygon.vertexAt(thisEdge.nextEdge().vertexIndex2());
    }

    return true;
}

static inline bool appendIntervalX(float x, bool inside, Vector<ShapeInterval>& result)
{
    if (!inside)
        result.append(ShapeInterval(x));
    else
        result[result.size() - 1].x2 = x;

    return !inside;
}

static bool compareEdgeIntersectionX(const EdgeIntersection& intersection1, const EdgeIntersection& intersection2)
{
    float x1 = intersection1.point.x();
    float x2 = intersection2.point.x();
    return (x1 == x2) ? intersection1.type < intersection2.type : x1 < x2;
}

static void computeXIntersections(const FloatPolygon& polygon, float y, bool isMinY, Vector<ShapeInterval>& result)
{
    Vector<const FloatPolygonEdge*> edges;
    if (!polygon.overlappingEdges(y, y, edges))
        return;

    Vector<EdgeIntersection> intersections;
    EdgeIntersection intersection;
    for (unsigned i = 0; i < edges.size(); ++i) {
        if (computeXIntersection(edges[i], y, intersection) && intersection.type != VertexYBoth)
            intersections.append(intersection);
    }

    if (intersections.size() < 2)
        return;

    std::sort(intersections.begin(), intersections.end(), WebCore::compareEdgeIntersectionX);

    unsigned index = 0;
    int windCount = 0;
    bool inside = false;

    while (index < intersections.size()) {
        const EdgeIntersection& thisIntersection = intersections[index];
        if (index + 1 < intersections.size()) {
            const EdgeIntersection& nextIntersection = intersections[index + 1];
            if ((thisIntersection.point.x() == nextIntersection.point.x()) && (thisIntersection.type == VertexMinY || thisIntersection.type == VertexMaxY)) {
                if (thisIntersection.type == nextIntersection.type) {
                    // Skip pairs of intersections whose types are VertexMaxY,VertexMaxY and VertexMinY,VertexMinY.
                    index += 2;
                } else {
                    // Replace pairs of intersections whose types are VertexMinY,VertexMaxY or VertexMaxY,VertexMinY with one intersection.
                    ++index;
                }
                continue;
            }
        }

        const FloatPolygonEdge& thisEdge = *thisIntersection.edge;
        bool evenOddCrossing = !windCount;

        if (polygon.fillRule() == RULE_EVENODD) {
            windCount += (thisEdge.vertex2().y() > thisEdge.vertex1().y()) ? 1 : -1;
            evenOddCrossing = evenOddCrossing || !windCount;
        }

        if (evenOddCrossing) {
            bool edgeCrossing = thisIntersection.type == Normal;
            if (!edgeCrossing) {
                FloatPoint prevVertex;
                FloatPoint thisVertex;
                FloatPoint nextVertex;

                if (getVertexIntersectionVertices(thisIntersection, prevVertex, thisVertex, nextVertex)) {
                    if (nextVertex.y() == y)
                        edgeCrossing = (isMinY) ? prevVertex.y() > y : prevVertex.y() < y;
                    else if (prevVertex.y() == y)
                        edgeCrossing = (isMinY) ? nextVertex.y() > y : nextVertex.y() < y;
                    else
                        edgeCrossing = true;
                }
            }
            if (edgeCrossing)
                inside = appendIntervalX(thisIntersection.point.x(), inside, result);
        }

        ++index;
    }
}

static void computeOverlappingEdgeXProjections(const FloatPolygon& polygon, float y1, float y2, Vector<ShapeInterval>& result)
{
    Vector<const FloatPolygonEdge*> edges;
    if (!polygon.overlappingEdges(y1, y2, edges))
        return;

    EdgeIntersection intersection;
    for (unsigned i = 0; i < edges.size(); ++i) {
        const FloatPolygonEdge *edge = edges[i];
        float x1;
        float x2;

        if (edge->minY() < y1) {
            computeXIntersection(edge, y1, intersection);
            x1 = intersection.point.x();
        } else
            x1 = (edge->vertex1().y() < edge->vertex2().y()) ? edge->vertex1().x() : edge->vertex2().x();

        if (edge->maxY() > y2) {
            computeXIntersection(edge, y2, intersection);
            x2 = intersection.point.x();
        } else
            x2 = (edge->vertex1().y() > edge->vertex2().y()) ? edge->vertex1().x() : edge->vertex2().x();

        if (x1 > x2)
            std::swap(x1, x2);

        if (x2 > x1)
            result.append(ShapeInterval(x1, x2));
    }

    sortShapeIntervals(result);
}

void PolygonShape::getExcludedIntervals(LayoutUnit logicalTop, LayoutUnit logicalHeight, SegmentList& result) const
{
    const FloatPolygon& polygon = shapeMarginBounds();
    if (polygon.isEmpty())
        return;

    float y1 = logicalTop;
    float y2 = logicalTop + logicalHeight;

    Vector<ShapeInterval> y1XIntervals, y2XIntervals;
    computeXIntersections(polygon, y1, true, y1XIntervals);
    computeXIntersections(polygon, y2, false, y2XIntervals);

    Vector<ShapeInterval> mergedIntervals;
    mergeShapeIntervals(y1XIntervals, y2XIntervals, mergedIntervals);

    Vector<ShapeInterval> edgeIntervals;
    computeOverlappingEdgeXProjections(polygon, y1, y2, edgeIntervals);

    Vector<ShapeInterval> excludedIntervals;
    mergeShapeIntervals(mergedIntervals, edgeIntervals, excludedIntervals);

    for (unsigned i = 0; i < excludedIntervals.size(); ++i) {
        ShapeInterval interval = excludedIntervals[i];
        result.append(LineSegment(interval.x1, interval.x2));
    }
}

void PolygonShape::getIncludedIntervals(LayoutUnit logicalTop, LayoutUnit logicalHeight, SegmentList& result) const
{
    const FloatPolygon& polygon = shapePaddingBounds();
    if (polygon.isEmpty())
        return;

    float y1 = logicalTop;
    float y2 = logicalTop + logicalHeight;

    Vector<ShapeInterval> y1XIntervals, y2XIntervals;
    computeXIntersections(polygon, y1, true, y1XIntervals);
    computeXIntersections(polygon, y2, false, y2XIntervals);

    Vector<ShapeInterval> commonIntervals;
    intersectShapeIntervals(y1XIntervals, y2XIntervals, commonIntervals);

    Vector<ShapeInterval> edgeIntervals;
    computeOverlappingEdgeXProjections(polygon, y1, y2, edgeIntervals);

    Vector<ShapeInterval> includedIntervals;
    subtractShapeIntervals(commonIntervals, edgeIntervals, includedIntervals);

    for (unsigned i = 0; i < includedIntervals.size(); ++i) {
        ShapeInterval interval = includedIntervals[i];
        result.append(LineSegment(interval.x1, interval.x2));
    }
}

static inline bool firstFitRectInPolygon(const FloatPolygon& polygon, const FloatRect& rect, unsigned offsetEdgeIndex1, unsigned offsetEdgeIndex2)
{
    Vector<const FloatPolygonEdge*> edges;
    if (!polygon.overlappingEdges(rect.y(), rect.maxY(), edges))
        return true;

    for (unsigned i = 0; i < edges.size(); ++i) {
        const FloatPolygonEdge* edge = edges[i];
        if (edge->edgeIndex() != offsetEdgeIndex1 && edge->edgeIndex() != offsetEdgeIndex2 && edge->overlapsRect(rect))
            return false;
    }

    return true;
}

static inline bool aboveOrToTheLeft(const FloatRect& r1, const FloatRect& r2)
{
    if (r1.y() < r2.y())
        return true;
    if (r1.y() == r2.y())
        return r1.x() < r2.x();
    return false;
}

bool PolygonShape::firstIncludedIntervalLogicalTop(LayoutUnit minLogicalIntervalTop, const LayoutSize& minLogicalIntervalSize, LayoutUnit& result) const
{
    float minIntervalTop = minLogicalIntervalTop;
    float minIntervalHeight = minLogicalIntervalSize.height();
    float minIntervalWidth = minLogicalIntervalSize.width();

    const FloatPolygon& polygon = shapePaddingBounds();
    const FloatRect boundingBox = polygon.boundingBox();
    if (minIntervalWidth > boundingBox.width())
        return false;

    float minY = std::max(boundingBox.y(), minIntervalTop);
    float maxY = minY + minIntervalHeight;

    if (maxY > boundingBox.maxY())
        return false;

    Vector<const FloatPolygonEdge*> edges;
    polygon.overlappingEdges(minIntervalTop, boundingBox.maxY(), edges);

    float dx = minIntervalWidth / 2;
    float dy = minIntervalHeight / 2;
    Vector<OffsetPolygonEdge> offsetEdges;

    for (unsigned i = 0; i < edges.size(); ++i) {
        const FloatPolygonEdge& edge = *(edges[i]);
        const FloatPoint& vertex0 = edge.previousEdge().vertex1();
        const FloatPoint& vertex1 = edge.vertex1();
        const FloatPoint& vertex2 = edge.vertex2();
        Vector<OffsetPolygonEdge> offsetEdgeBuffer;

        if (vertex2.y() > vertex1.y() ? vertex2.x() >= vertex1.x() : vertex1.x() >= vertex2.x()) {
            offsetEdgeBuffer.append(OffsetPolygonEdge(edge, FloatSize(dx, -dy)));
            offsetEdgeBuffer.append(OffsetPolygonEdge(edge, FloatSize(-dx, dy)));
        } else {
            offsetEdgeBuffer.append(OffsetPolygonEdge(edge, FloatSize(dx, dy)));
            offsetEdgeBuffer.append(OffsetPolygonEdge(edge, FloatSize(-dx, -dy)));
        }

        if (isReflexVertex(vertex0, vertex1, vertex2)) {
            if (vertex2.x() <= vertex1.x() && vertex0.x() <= vertex1.x())
                offsetEdgeBuffer.append(OffsetPolygonEdge(vertex1, FloatSize(dx, -dy), FloatSize(dx, dy)));
            else if (vertex2.x() >= vertex1.x() && vertex0.x() >= vertex1.x())
                offsetEdgeBuffer.append(OffsetPolygonEdge(vertex1, FloatSize(-dx, -dy), FloatSize(-dx, dy)));
            if (vertex2.y() <= vertex1.y() && vertex0.y() <= vertex1.y())
                offsetEdgeBuffer.append(OffsetPolygonEdge(vertex1, FloatSize(-dx, dy), FloatSize(dx, dy)));
            else if (vertex2.y() >= vertex1.y() && vertex0.y() >= vertex1.y())
                offsetEdgeBuffer.append(OffsetPolygonEdge(vertex1, FloatSize(-dx, -dy), FloatSize(dx, -dy)));
        }

        for (unsigned j = 0; j < offsetEdgeBuffer.size(); ++j)
            if (offsetEdgeBuffer[j].maxY() >= minY)
                offsetEdges.append(offsetEdgeBuffer[j]);
    }

    offsetEdges.append(OffsetPolygonEdge(polygon, minIntervalTop, FloatSize(0, dy)));

    FloatPoint offsetEdgesIntersection;
    FloatRect firstFitRect;
    bool firstFitFound = false;

    for (unsigned i = 0; i < offsetEdges.size() - 1; ++i) {
        for (unsigned j = i + 1; j < offsetEdges.size(); ++j) {
            if (offsetEdges[i].intersection(offsetEdges[j], offsetEdgesIntersection)) {
                FloatPoint potentialFirstFitLocation(offsetEdgesIntersection.x() - dx, offsetEdgesIntersection.y() - dy);
                FloatRect potentialFirstFitRect(potentialFirstFitLocation, minLogicalIntervalSize);
                if ((offsetEdges[i].basis() == OffsetPolygonEdge::LineTop
                    || offsetEdges[j].basis() == OffsetPolygonEdge::LineTop
                    || potentialFirstFitLocation.y() >= minIntervalTop)
                    && (!firstFitFound || aboveOrToTheLeft(potentialFirstFitRect, firstFitRect))
                    && polygon.contains(offsetEdgesIntersection)
                    && firstFitRectInPolygon(polygon, potentialFirstFitRect, offsetEdges[i].edgeIndex(), offsetEdges[j].edgeIndex())) {
                    firstFitFound = true;
                    firstFitRect = potentialFirstFitRect;
                }
            }
        }
    }

    if (firstFitFound)
        result = ceiledLayoutUnit(firstFitRect.y());
    return firstFitFound;
}

} // namespace WebCore