1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 721 722 723 724 725 726 727 728 729 730 731 732 733 734 735 736 737 738 739 740 741 742 743 744 745 746 747 748 749 750 751 752 753 754 755 756 757 758 759 760 761 762 763 764 765 766 767 768 769 770 771 772 773 774 775 776 777 778 779 780 781 782 783 784 785 786 787 788 789 790 791 792 793 794 795 796 797 798 799 800 801 802 803 804 805 806 807 808 809 810 811 812 813 814 815 816 817 818 819 820 821 822 823 824 825 826 827 828 829 830 831 832 833 834 835 836 837 838 839 840 841 842 843 844 845 846 847 848 849 850 851 852 853 854 855 856 857 858 859 860 861 862 863 864 865 866 867 868 869 870 871 872 873 874 875 876 877 878 879 880 881 882 883 884 885 886 887 888 889 890 891 892 893 894 895 896 897 898 899 900 901 902 903 904 905 906 907 908 909 910 911 912 913 914 915 916 917 918 919 920 921 922 923 924 925 926 927 928 929 930 931 932 933 934 935 936 937 938 939 940 941 942 943 944 945 946 947 948 949 950 951 952 953 954 955 956 957 958 959 960 961 962 963 964 965 966 967 968 969 970 971 972 973 974 975 976 977 978 979 980 981 982 983 984 985 986 987 988 989 990 991 992 993 994 995 996 997 998 999 1000 1001 1002 1003 1004 1005 1006 1007 1008 1009 1010 1011 1012 1013 1014 1015 1016 1017 1018 1019 1020 1021 1022 1023 1024 1025 1026 1027 1028 1029 1030 1031 1032 1033 1034 1035 1036 1037 1038 1039 1040 1041 1042 1043 1044 1045 1046 1047 1048 1049 1050 1051 1052 1053 1054 1055 1056 1057 1058 1059 1060 1061 1062 1063 1064 1065 1066 1067 1068 1069 1070 1071 1072 1073 1074 1075 1076 1077 1078 1079 1080 1081 1082 1083 1084 1085 1086 1087 1088 1089 1090 1091 1092 1093 1094 1095 1096 1097 1098 1099 1100 1101 1102 1103 1104 1105 1106 1107 1108 1109 1110 1111 1112 1113 1114 1115 1116 1117 1118 1119 1120 1121 1122 1123 1124 1125 1126 1127 1128 1129 1130 1131 1132 1133 1134 1135 1136 1137 1138 1139 1140 1141 1142 1143 1144 1145 1146 1147 1148 1149 1150 1151 1152 1153 1154 1155 1156 1157 1158 1159 1160 1161 1162 1163 1164 1165 1166 1167 1168 1169 1170 1171 1172 1173 1174 1175 1176 1177 1178 1179 1180 1181 1182 1183 1184 1185 1186 1187 1188 1189 1190 1191 1192 1193 1194 1195 1196 1197 1198 1199 1200 1201 1202 1203 1204 1205 1206 1207 1208 1209 1210 1211 1212 1213 1214 1215 1216 1217 1218 1219 1220 1221 1222 1223 1224 1225 1226 1227 1228 1229 1230 1231 1232 1233 1234 1235 1236 1237 1238 1239 1240 1241 1242 1243 1244 1245 1246 1247 1248 1249 1250 1251 1252 1253 1254 1255 1256 1257 1258 1259 1260 1261 1262 1263 1264 1265 1266 1267 1268 1269 1270 1271 1272 1273 1274 1275 1276 1277 1278 1279 1280 1281 1282 1283 1284 1285 1286 1287 1288 1289 1290 1291 1292 1293 1294 1295 1296 1297 1298 1299 1300 1301 1302 1303 1304 1305 1306 1307 1308 1309 1310 1311 1312 1313 1314 1315 1316 1317 1318 1319 1320 1321 1322 1323 1324 1325 1326 1327 1328 1329 1330 1331 1332 1333 1334 1335 1336 1337 1338 1339 1340 1341 1342 1343 1344 1345 1346 1347 1348 1349 1350 1351 1352 1353 1354 1355 1356 1357 1358 1359 1360 1361 1362 1363 1364 1365 1366 1367 1368 1369 1370 1371 1372 1373 1374 1375 1376 1377 1378 1379 1380 1381 1382 1383 1384 1385 1386 1387 1388 1389 1390 1391 1392 1393 1394 1395 1396 1397 1398 1399 1400 1401 1402 1403 1404 1405 1406 1407 1408 1409 1410 1411 1412 1413 1414 1415 1416 1417 1418 1419 1420 1421 1422 1423 1424 1425 1426 1427 1428 1429 1430 1431 1432 1433 1434 1435 1436 1437 1438 1439 1440 1441 1442 1443 1444 1445 1446 1447 1448 1449 1450 1451 1452 1453 1454 1455 1456 1457 1458 1459 1460 1461 1462 1463 1464 1465 1466 1467 1468 1469 1470 1471 1472 1473 1474 1475 1476 1477 1478 1479 1480 1481 1482 1483
|
/*
* Copyright (C) 2008, 2009, 2010, 2011, 2012, 2013 Apple Inc. All rights reserved.
* Copyright (C) 2008 Cameron Zwarich <cwzwarich@uwaterloo.ca>
*
* Redistribution and use in source and binary forms, with or without
* modification, are permitted provided that the following conditions
* are met:
*
* 1. Redistributions of source code must retain the above copyright
* notice, this list of conditions and the following disclaimer.
* 2. Redistributions in binary form must reproduce the above copyright
* notice, this list of conditions and the following disclaimer in the
* documentation and/or other materials provided with the distribution.
* 3. Neither the name of Apple Computer, Inc. ("Apple") nor the names of
* its contributors may be used to endorse or promote products derived
* from this software without specific prior written permission.
*
* THIS SOFTWARE IS PROVIDED BY APPLE AND ITS CONTRIBUTORS "AS IS" AND ANY
* EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED
* WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE
* DISCLAIMED. IN NO EVENT SHALL APPLE OR ITS CONTRIBUTORS BE LIABLE FOR ANY
* DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES
* (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES;
* LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND
* ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT
* (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE OF
* THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
*/
#ifndef CodeBlock_h
#define CodeBlock_h
#include "ArrayProfile.h"
#include "ByValInfo.h"
#include "BytecodeConventions.h"
#include "CallLinkInfo.h"
#include "CallReturnOffsetToBytecodeOffset.h"
#include "CodeBlockHash.h"
#include "CodeOrigin.h"
#include "CodeType.h"
#include "CompactJITCodeMap.h"
#include "DFGCodeBlocks.h"
#include "DFGCommon.h"
#include "DFGExitProfile.h"
#include "DFGMinifiedGraph.h"
#include "DFGOSREntry.h"
#include "DFGOSRExit.h"
#include "DFGVariableEventStream.h"
#include "EvalCodeCache.h"
#include "ExecutionCounter.h"
#include "ExpressionRangeInfo.h"
#include "HandlerInfo.h"
#include "ObjectAllocationProfile.h"
#include "Options.h"
#include "Instruction.h"
#include "JITCode.h"
#include "JITWriteBarrier.h"
#include "JSGlobalObject.h"
#include "JumpReplacementWatchpoint.h"
#include "JumpTable.h"
#include "LLIntCallLinkInfo.h"
#include "LazyOperandValueProfile.h"
#include "LineInfo.h"
#include "ProfilerCompilation.h"
#include "RegExpObject.h"
#include "ResolveOperation.h"
#include "StructureStubInfo.h"
#include "UnconditionalFinalizer.h"
#include "ValueProfile.h"
#include "Watchpoint.h"
#include <wtf/RefCountedArray.h>
#include <wtf/FastAllocBase.h>
#include <wtf/PassOwnPtr.h>
#include <wtf/Platform.h>
#include <wtf/RefPtr.h>
#include <wtf/SegmentedVector.h>
#include <wtf/Vector.h>
#include <wtf/text/WTFString.h>
namespace JSC {
class DFGCodeBlocks;
class ExecState;
class LLIntOffsetsExtractor;
class RepatchBuffer;
inline int unmodifiedArgumentsRegister(int argumentsRegister) { return argumentsRegister - 1; }
static ALWAYS_INLINE int missingThisObjectMarker() { return std::numeric_limits<int>::max(); }
class CodeBlock : public UnconditionalFinalizer, public WeakReferenceHarvester {
WTF_MAKE_FAST_ALLOCATED;
friend class JIT;
friend class LLIntOffsetsExtractor;
public:
enum CopyParsedBlockTag { CopyParsedBlock };
protected:
CodeBlock(CopyParsedBlockTag, CodeBlock& other);
CodeBlock(ScriptExecutable* ownerExecutable, UnlinkedCodeBlock*, JSGlobalObject*, unsigned baseScopeDepth, PassRefPtr<SourceProvider>, unsigned sourceOffset, unsigned firstLineColumnOffset, PassOwnPtr<CodeBlock> alternative);
WriteBarrier<JSGlobalObject> m_globalObject;
Heap* m_heap;
public:
JS_EXPORT_PRIVATE virtual ~CodeBlock();
UnlinkedCodeBlock* unlinkedCodeBlock() const { return m_unlinkedCode.get(); }
String inferredName() const;
CodeBlockHash hash() const;
String sourceCodeForTools() const; // Not quite the actual source we parsed; this will do things like prefix the source for a function with a reified signature.
String sourceCodeOnOneLine() const; // As sourceCodeForTools(), but replaces all whitespace runs with a single space.
void dumpAssumingJITType(PrintStream&, JITCode::JITType) const;
void dump(PrintStream&) const;
int numParameters() const { return m_numParameters; }
void setNumParameters(int newValue);
int* addressOfNumParameters() { return &m_numParameters; }
static ptrdiff_t offsetOfNumParameters() { return OBJECT_OFFSETOF(CodeBlock, m_numParameters); }
CodeBlock* alternative() { return m_alternative.get(); }
PassOwnPtr<CodeBlock> releaseAlternative() { return m_alternative.release(); }
void setAlternative(PassOwnPtr<CodeBlock> alternative) { m_alternative = alternative; }
CodeSpecializationKind specializationKind() const
{
return specializationFromIsConstruct(m_isConstructor);
}
#if ENABLE(JIT)
CodeBlock* baselineVersion()
{
CodeBlock* result = replacement();
if (!result)
return 0; // This can happen if we're in the process of creating the baseline version.
while (result->alternative())
result = result->alternative();
ASSERT(result);
ASSERT(JITCode::isBaselineCode(result->getJITType()));
return result;
}
#else
CodeBlock* baselineVersion()
{
return this;
}
#endif
void visitAggregate(SlotVisitor&);
static void dumpStatistics();
void dumpBytecode(PrintStream& = WTF::dataFile());
void dumpBytecode(PrintStream&, unsigned bytecodeOffset);
void printStructures(PrintStream&, const Instruction*);
void printStructure(PrintStream&, const char* name, const Instruction*, int operand);
bool isStrictMode() const { return m_isStrictMode; }
inline bool isKnownNotImmediate(int index)
{
if (index == m_thisRegister && !m_isStrictMode)
return true;
if (isConstantRegisterIndex(index))
return getConstant(index).isCell();
return false;
}
ALWAYS_INLINE bool isTemporaryRegisterIndex(int index)
{
return index >= m_numVars;
}
HandlerInfo* handlerForBytecodeOffset(unsigned bytecodeOffset);
unsigned lineNumberForBytecodeOffset(unsigned bytecodeOffset);
unsigned columnNumberForBytecodeOffset(unsigned bytecodeOffset);
void expressionRangeForBytecodeOffset(unsigned bytecodeOffset, int& divot,
int& startOffset, int& endOffset, unsigned& line, unsigned& column);
#if ENABLE(JIT)
StructureStubInfo& getStubInfo(ReturnAddressPtr returnAddress)
{
return *(binarySearch<StructureStubInfo, void*>(m_structureStubInfos, m_structureStubInfos.size(), returnAddress.value(), getStructureStubInfoReturnLocation));
}
StructureStubInfo& getStubInfo(unsigned bytecodeIndex)
{
return *(binarySearch<StructureStubInfo, unsigned>(m_structureStubInfos, m_structureStubInfos.size(), bytecodeIndex, getStructureStubInfoBytecodeIndex));
}
void resetStub(StructureStubInfo&);
ByValInfo& getByValInfo(unsigned bytecodeIndex)
{
return *(binarySearch<ByValInfo, unsigned>(m_byValInfos, m_byValInfos.size(), bytecodeIndex, getByValInfoBytecodeIndex));
}
CallLinkInfo& getCallLinkInfo(ReturnAddressPtr returnAddress)
{
return *(binarySearch<CallLinkInfo, void*>(m_callLinkInfos, m_callLinkInfos.size(), returnAddress.value(), getCallLinkInfoReturnLocation));
}
CallLinkInfo& getCallLinkInfo(unsigned bytecodeIndex)
{
ASSERT(JITCode::isBaselineCode(getJITType()));
return *(binarySearch<CallLinkInfo, unsigned>(m_callLinkInfos, m_callLinkInfos.size(), bytecodeIndex, getCallLinkInfoBytecodeIndex));
}
#endif // ENABLE(JIT)
#if ENABLE(LLINT)
Instruction* adjustPCIfAtCallSite(Instruction*);
#endif
unsigned bytecodeOffset(ExecState*, ReturnAddressPtr);
#if ENABLE(JIT)
unsigned bytecodeOffsetForCallAtIndex(unsigned index)
{
if (!m_rareData)
return 1;
Vector<CallReturnOffsetToBytecodeOffset, 0, UnsafeVectorOverflow>& callIndices = m_rareData->m_callReturnIndexVector;
if (!callIndices.size())
return 1;
// FIXME: Fix places in DFG that call out to C that don't set the CodeOrigin. https://bugs.webkit.org/show_bug.cgi?id=118315
ASSERT(index < m_rareData->m_callReturnIndexVector.size());
if (index >= m_rareData->m_callReturnIndexVector.size())
return 1;
return m_rareData->m_callReturnIndexVector[index].bytecodeOffset;
}
void unlinkCalls();
bool hasIncomingCalls() { return m_incomingCalls.begin() != m_incomingCalls.end(); }
void linkIncomingCall(CallLinkInfo* incoming)
{
m_incomingCalls.push(incoming);
}
bool isIncomingCallAlreadyLinked(CallLinkInfo* incoming)
{
return m_incomingCalls.isOnList(incoming);
}
#endif // ENABLE(JIT)
#if ENABLE(LLINT)
void linkIncomingCall(LLIntCallLinkInfo* incoming)
{
m_incomingLLIntCalls.push(incoming);
}
#endif // ENABLE(LLINT)
void unlinkIncomingCalls();
#if ENABLE(DFG_JIT) || ENABLE(LLINT)
void setJITCodeMap(PassOwnPtr<CompactJITCodeMap> jitCodeMap)
{
m_jitCodeMap = jitCodeMap;
}
CompactJITCodeMap* jitCodeMap()
{
return m_jitCodeMap.get();
}
#endif
#if ENABLE(DFG_JIT)
void createDFGDataIfNecessary()
{
if (!!m_dfgData)
return;
m_dfgData = adoptPtr(new DFGData);
}
void saveCompilation(PassRefPtr<Profiler::Compilation> compilation)
{
createDFGDataIfNecessary();
m_dfgData->compilation = compilation;
}
Profiler::Compilation* compilation()
{
if (!m_dfgData)
return 0;
return m_dfgData->compilation.get();
}
DFG::OSREntryData* appendDFGOSREntryData(unsigned bytecodeIndex, unsigned machineCodeOffset)
{
createDFGDataIfNecessary();
DFG::OSREntryData entry;
entry.m_bytecodeIndex = bytecodeIndex;
entry.m_machineCodeOffset = machineCodeOffset;
m_dfgData->osrEntry.append(entry);
return &m_dfgData->osrEntry.last();
}
unsigned numberOfDFGOSREntries() const
{
if (!m_dfgData)
return 0;
return m_dfgData->osrEntry.size();
}
DFG::OSREntryData* dfgOSREntryData(unsigned i) { return &m_dfgData->osrEntry[i]; }
DFG::OSREntryData* dfgOSREntryDataForBytecodeIndex(unsigned bytecodeIndex)
{
if (!m_dfgData)
return 0;
return tryBinarySearch<DFG::OSREntryData, unsigned>(
m_dfgData->osrEntry, m_dfgData->osrEntry.size(), bytecodeIndex,
DFG::getOSREntryDataBytecodeIndex);
}
unsigned appendOSRExit(const DFG::OSRExit& osrExit)
{
createDFGDataIfNecessary();
unsigned result = m_dfgData->osrExit.size();
m_dfgData->osrExit.append(osrExit);
return result;
}
DFG::OSRExit& lastOSRExit()
{
return m_dfgData->osrExit.last();
}
unsigned appendSpeculationRecovery(const DFG::SpeculationRecovery& recovery)
{
createDFGDataIfNecessary();
unsigned result = m_dfgData->speculationRecovery.size();
m_dfgData->speculationRecovery.append(recovery);
return result;
}
unsigned appendWatchpoint(const JumpReplacementWatchpoint& watchpoint)
{
createDFGDataIfNecessary();
unsigned result = m_dfgData->watchpoints.size();
m_dfgData->watchpoints.append(watchpoint);
return result;
}
unsigned numberOfOSRExits()
{
if (!m_dfgData)
return 0;
return m_dfgData->osrExit.size();
}
unsigned numberOfSpeculationRecoveries()
{
if (!m_dfgData)
return 0;
return m_dfgData->speculationRecovery.size();
}
unsigned numberOfWatchpoints()
{
if (!m_dfgData)
return 0;
return m_dfgData->watchpoints.size();
}
DFG::OSRExit& osrExit(unsigned index)
{
return m_dfgData->osrExit[index];
}
DFG::SpeculationRecovery& speculationRecovery(unsigned index)
{
return m_dfgData->speculationRecovery[index];
}
JumpReplacementWatchpoint& watchpoint(unsigned index)
{
return m_dfgData->watchpoints[index];
}
void appendWeakReference(JSCell* target)
{
createDFGDataIfNecessary();
m_dfgData->weakReferences.append(WriteBarrier<JSCell>(*vm(), ownerExecutable(), target));
}
void appendWeakReferenceTransition(JSCell* codeOrigin, JSCell* from, JSCell* to)
{
createDFGDataIfNecessary();
m_dfgData->transitions.append(
WeakReferenceTransition(*vm(), ownerExecutable(), codeOrigin, from, to));
}
DFG::MinifiedGraph& minifiedDFG()
{
createDFGDataIfNecessary();
return m_dfgData->minifiedDFG;
}
DFG::VariableEventStream& variableEventStream()
{
createDFGDataIfNecessary();
return m_dfgData->variableEventStream;
}
#endif
unsigned bytecodeOffset(Instruction* returnAddress)
{
RELEASE_ASSERT(returnAddress >= instructions().begin() && returnAddress < instructions().end());
return static_cast<Instruction*>(returnAddress) - instructions().begin();
}
bool isNumericCompareFunction() { return m_unlinkedCode->isNumericCompareFunction(); }
unsigned numberOfInstructions() const { return m_instructions.size(); }
RefCountedArray<Instruction>& instructions() { return m_instructions; }
const RefCountedArray<Instruction>& instructions() const { return m_instructions; }
size_t predictedMachineCodeSize();
bool usesOpcode(OpcodeID);
unsigned instructionCount() { return m_instructions.size(); }
int argumentIndexAfterCapture(size_t argument);
#if ENABLE(JIT)
void setJITCode(const JITCode& code, MacroAssemblerCodePtr codeWithArityCheck)
{
m_jitCode = code;
m_jitCodeWithArityCheck = codeWithArityCheck;
#if ENABLE(DFG_JIT)
if (m_jitCode.jitType() == JITCode::DFGJIT) {
createDFGDataIfNecessary();
m_vm->heap.m_dfgCodeBlocks.m_set.add(this);
}
#endif
}
JITCode& getJITCode() { return m_jitCode; }
MacroAssemblerCodePtr getJITCodeWithArityCheck() { return m_jitCodeWithArityCheck; }
JITCode::JITType getJITType() const { return m_jitCode.jitType(); }
ExecutableMemoryHandle* executableMemory() { return getJITCode().getExecutableMemory(); }
virtual JSObject* compileOptimized(ExecState*, JSScope*, unsigned bytecodeIndex) = 0;
void jettison();
enum JITCompilationResult { AlreadyCompiled, CouldNotCompile, CompiledSuccessfully };
JITCompilationResult jitCompile(ExecState* exec)
{
if (getJITType() != JITCode::InterpreterThunk) {
ASSERT(getJITType() == JITCode::BaselineJIT);
return AlreadyCompiled;
}
#if ENABLE(JIT)
if (jitCompileImpl(exec))
return CompiledSuccessfully;
return CouldNotCompile;
#else
UNUSED_PARAM(exec);
return CouldNotCompile;
#endif
}
virtual CodeBlock* replacement() = 0;
virtual DFG::CapabilityLevel canCompileWithDFGInternal() = 0;
DFG::CapabilityLevel canCompileWithDFG()
{
DFG::CapabilityLevel result = canCompileWithDFGInternal();
m_canCompileWithDFGState = result;
return result;
}
DFG::CapabilityLevel canCompileWithDFGState() { return m_canCompileWithDFGState; }
bool hasOptimizedReplacement()
{
ASSERT(JITCode::isBaselineCode(getJITType()));
bool result = replacement()->getJITType() > getJITType();
#if !ASSERT_DISABLED
if (result)
ASSERT(replacement()->getJITType() == JITCode::DFGJIT);
else {
ASSERT(JITCode::isBaselineCode(replacement()->getJITType()));
ASSERT(replacement() == this);
}
#endif
return result;
}
#else
JITCode::JITType getJITType() const { return JITCode::BaselineJIT; }
#endif
ScriptExecutable* ownerExecutable() const { return m_ownerExecutable.get(); }
void setVM(VM* vm) { m_vm = vm; }
VM* vm() { return m_vm; }
void setThisRegister(int thisRegister) { m_thisRegister = thisRegister; }
int thisRegister() const { return m_thisRegister; }
bool needsFullScopeChain() const { return m_unlinkedCode->needsFullScopeChain(); }
bool usesEval() const { return m_unlinkedCode->usesEval(); }
void setArgumentsRegister(int argumentsRegister)
{
ASSERT(argumentsRegister != -1);
m_argumentsRegister = argumentsRegister;
ASSERT(usesArguments());
}
int argumentsRegister() const
{
ASSERT(usesArguments());
return m_argumentsRegister;
}
int uncheckedArgumentsRegister()
{
if (!usesArguments())
return InvalidVirtualRegister;
return argumentsRegister();
}
void setActivationRegister(int activationRegister)
{
m_activationRegister = activationRegister;
}
int activationRegister() const
{
ASSERT(needsFullScopeChain());
return m_activationRegister;
}
int uncheckedActivationRegister()
{
if (!needsFullScopeChain())
return InvalidVirtualRegister;
return activationRegister();
}
bool usesArguments() const { return m_argumentsRegister != -1; }
bool needsActivation() const
{
return needsFullScopeChain() && codeType() != GlobalCode;
}
bool isCaptured(int operand, InlineCallFrame* inlineCallFrame = 0) const
{
if (operandIsArgument(operand))
return operandToArgument(operand) && usesArguments();
if (inlineCallFrame)
return inlineCallFrame->capturedVars.get(operand);
// The activation object isn't in the captured region, but it's "captured"
// in the sense that stores to its location can be observed indirectly.
if (needsActivation() && operand == activationRegister())
return true;
// Ditto for the arguments object.
if (usesArguments() && operand == argumentsRegister())
return true;
// Ditto for the arguments object.
if (usesArguments() && operand == unmodifiedArgumentsRegister(argumentsRegister()))
return true;
// We're in global code so there are no locals to capture
if (!symbolTable())
return false;
return operand >= symbolTable()->captureStart()
&& operand < symbolTable()->captureEnd();
}
CodeType codeType() const { return m_unlinkedCode->codeType(); }
SourceProvider* source() const { return m_source.get(); }
unsigned sourceOffset() const { return m_sourceOffset; }
unsigned firstLineColumnOffset() const { return m_firstLineColumnOffset; }
size_t numberOfJumpTargets() const { return m_unlinkedCode->numberOfJumpTargets(); }
unsigned jumpTarget(int index) const { return m_unlinkedCode->jumpTarget(index); }
void createActivation(CallFrame*);
void clearEvalCache();
String nameForRegister(int registerNumber);
#if ENABLE(JIT)
void setNumberOfStructureStubInfos(size_t size) { m_structureStubInfos.grow(size); }
size_t numberOfStructureStubInfos() const { return m_structureStubInfos.size(); }
StructureStubInfo& structureStubInfo(int index) { return m_structureStubInfos[index]; }
void setNumberOfByValInfos(size_t size) { m_byValInfos.grow(size); }
size_t numberOfByValInfos() const { return m_byValInfos.size(); }
ByValInfo& byValInfo(size_t index) { return m_byValInfos[index]; }
void setNumberOfCallLinkInfos(size_t size) { m_callLinkInfos.grow(size); }
size_t numberOfCallLinkInfos() const { return m_callLinkInfos.size(); }
CallLinkInfo& callLinkInfo(int index) { return m_callLinkInfos[index]; }
#endif
#if ENABLE(VALUE_PROFILER)
unsigned numberOfArgumentValueProfiles()
{
ASSERT(m_numParameters >= 0);
ASSERT(m_argumentValueProfiles.size() == static_cast<unsigned>(m_numParameters));
return m_argumentValueProfiles.size();
}
ValueProfile* valueProfileForArgument(unsigned argumentIndex)
{
ValueProfile* result = &m_argumentValueProfiles[argumentIndex];
ASSERT(result->m_bytecodeOffset == -1);
return result;
}
unsigned numberOfValueProfiles() { return m_valueProfiles.size(); }
ValueProfile* valueProfile(int index) { return &m_valueProfiles[index]; }
ValueProfile* valueProfileForBytecodeOffset(int bytecodeOffset)
{
ValueProfile* result = binarySearch<ValueProfile, int>(
m_valueProfiles, m_valueProfiles.size(), bytecodeOffset,
getValueProfileBytecodeOffset<ValueProfile>);
ASSERT(result->m_bytecodeOffset != -1);
ASSERT(instructions()[bytecodeOffset + opcodeLength(
m_vm->interpreter->getOpcodeID(
instructions()[
bytecodeOffset].u.opcode)) - 1].u.profile == result);
return result;
}
SpeculatedType valueProfilePredictionForBytecodeOffset(int bytecodeOffset)
{
return valueProfileForBytecodeOffset(bytecodeOffset)->computeUpdatedPrediction();
}
unsigned totalNumberOfValueProfiles()
{
return numberOfArgumentValueProfiles() + numberOfValueProfiles();
}
ValueProfile* getFromAllValueProfiles(unsigned index)
{
if (index < numberOfArgumentValueProfiles())
return valueProfileForArgument(index);
return valueProfile(index - numberOfArgumentValueProfiles());
}
RareCaseProfile* addRareCaseProfile(int bytecodeOffset)
{
m_rareCaseProfiles.append(RareCaseProfile(bytecodeOffset));
return &m_rareCaseProfiles.last();
}
unsigned numberOfRareCaseProfiles() { return m_rareCaseProfiles.size(); }
RareCaseProfile* rareCaseProfile(int index) { return &m_rareCaseProfiles[index]; }
RareCaseProfile* rareCaseProfileForBytecodeOffset(int bytecodeOffset)
{
return tryBinarySearch<RareCaseProfile, int>(
m_rareCaseProfiles, m_rareCaseProfiles.size(), bytecodeOffset,
getRareCaseProfileBytecodeOffset);
}
bool likelyToTakeSlowCase(int bytecodeOffset)
{
if (!numberOfRareCaseProfiles())
return false;
unsigned value = rareCaseProfileForBytecodeOffset(bytecodeOffset)->m_counter;
return value >= Options::likelyToTakeSlowCaseMinimumCount();
}
bool couldTakeSlowCase(int bytecodeOffset)
{
if (!numberOfRareCaseProfiles())
return false;
unsigned value = rareCaseProfileForBytecodeOffset(bytecodeOffset)->m_counter;
return value >= Options::couldTakeSlowCaseMinimumCount();
}
RareCaseProfile* addSpecialFastCaseProfile(int bytecodeOffset)
{
m_specialFastCaseProfiles.append(RareCaseProfile(bytecodeOffset));
return &m_specialFastCaseProfiles.last();
}
unsigned numberOfSpecialFastCaseProfiles() { return m_specialFastCaseProfiles.size(); }
RareCaseProfile* specialFastCaseProfile(int index) { return &m_specialFastCaseProfiles[index]; }
RareCaseProfile* specialFastCaseProfileForBytecodeOffset(int bytecodeOffset)
{
return tryBinarySearch<RareCaseProfile, int>(
m_specialFastCaseProfiles, m_specialFastCaseProfiles.size(), bytecodeOffset,
getRareCaseProfileBytecodeOffset);
}
bool likelyToTakeSpecialFastCase(int bytecodeOffset)
{
if (!numberOfRareCaseProfiles())
return false;
unsigned specialFastCaseCount = specialFastCaseProfileForBytecodeOffset(bytecodeOffset)->m_counter;
return specialFastCaseCount >= Options::likelyToTakeSlowCaseMinimumCount();
}
bool couldTakeSpecialFastCase(int bytecodeOffset)
{
if (!numberOfRareCaseProfiles())
return false;
unsigned specialFastCaseCount = specialFastCaseProfileForBytecodeOffset(bytecodeOffset)->m_counter;
return specialFastCaseCount >= Options::couldTakeSlowCaseMinimumCount();
}
bool likelyToTakeDeepestSlowCase(int bytecodeOffset)
{
if (!numberOfRareCaseProfiles())
return false;
unsigned slowCaseCount = rareCaseProfileForBytecodeOffset(bytecodeOffset)->m_counter;
unsigned specialFastCaseCount = specialFastCaseProfileForBytecodeOffset(bytecodeOffset)->m_counter;
unsigned value = slowCaseCount - specialFastCaseCount;
return value >= Options::likelyToTakeSlowCaseMinimumCount();
}
bool likelyToTakeAnySlowCase(int bytecodeOffset)
{
if (!numberOfRareCaseProfiles())
return false;
unsigned slowCaseCount = rareCaseProfileForBytecodeOffset(bytecodeOffset)->m_counter;
unsigned specialFastCaseCount = specialFastCaseProfileForBytecodeOffset(bytecodeOffset)->m_counter;
unsigned value = slowCaseCount + specialFastCaseCount;
return value >= Options::likelyToTakeSlowCaseMinimumCount();
}
unsigned numberOfArrayProfiles() const { return m_arrayProfiles.size(); }
const ArrayProfileVector& arrayProfiles() { return m_arrayProfiles; }
ArrayProfile* addArrayProfile(unsigned bytecodeOffset)
{
m_arrayProfiles.append(ArrayProfile(bytecodeOffset));
return &m_arrayProfiles.last();
}
ArrayProfile* getArrayProfile(unsigned bytecodeOffset);
ArrayProfile* getOrAddArrayProfile(unsigned bytecodeOffset);
#endif
// Exception handling support
size_t numberOfExceptionHandlers() const { return m_rareData ? m_rareData->m_exceptionHandlers.size() : 0; }
void allocateHandlers(const Vector<UnlinkedHandlerInfo>& unlinkedHandlers)
{
size_t count = unlinkedHandlers.size();
if (!count)
return;
createRareDataIfNecessary();
m_rareData->m_exceptionHandlers.resize(count);
for (size_t i = 0; i < count; ++i) {
m_rareData->m_exceptionHandlers[i].start = unlinkedHandlers[i].start;
m_rareData->m_exceptionHandlers[i].end = unlinkedHandlers[i].end;
m_rareData->m_exceptionHandlers[i].target = unlinkedHandlers[i].target;
m_rareData->m_exceptionHandlers[i].scopeDepth = unlinkedHandlers[i].scopeDepth;
}
}
HandlerInfo& exceptionHandler(int index) { RELEASE_ASSERT(m_rareData); return m_rareData->m_exceptionHandlers[index]; }
bool hasExpressionInfo() { return m_unlinkedCode->hasExpressionInfo(); }
#if ENABLE(JIT)
Vector<CallReturnOffsetToBytecodeOffset, 0, UnsafeVectorOverflow>& callReturnIndexVector()
{
createRareDataIfNecessary();
return m_rareData->m_callReturnIndexVector;
}
#endif
#if ENABLE(DFG_JIT)
SegmentedVector<InlineCallFrame, 4>& inlineCallFrames()
{
createRareDataIfNecessary();
return m_rareData->m_inlineCallFrames;
}
Vector<CodeOriginAtCallReturnOffset, 0, UnsafeVectorOverflow>& codeOrigins()
{
createRareDataIfNecessary();
return m_rareData->m_codeOrigins;
}
// Having code origins implies that there has been some inlining.
bool hasCodeOrigins()
{
return m_rareData && !!m_rareData->m_codeOrigins.size();
}
bool codeOriginForReturn(ReturnAddressPtr, CodeOrigin&);
bool canGetCodeOrigin(unsigned index)
{
if (!m_rareData)
return false;
return m_rareData->m_codeOrigins.size() > index;
}
CodeOrigin codeOrigin(unsigned index)
{
RELEASE_ASSERT(m_rareData);
return m_rareData->m_codeOrigins[index].codeOrigin;
}
bool addFrequentExitSite(const DFG::FrequentExitSite& site)
{
ASSERT(JITCode::isBaselineCode(getJITType()));
return m_exitProfile.add(site);
}
bool hasExitSite(const DFG::FrequentExitSite& site) const { return m_exitProfile.hasExitSite(site); }
DFG::ExitProfile& exitProfile() { return m_exitProfile; }
CompressedLazyOperandValueProfileHolder& lazyOperandValueProfiles()
{
return m_lazyOperandValueProfiles;
}
#endif
// Constant Pool
size_t numberOfIdentifiers() const { return m_identifiers.size(); }
void addIdentifier(const Identifier& i) { return m_identifiers.append(i); }
Identifier& identifier(int index) { return m_identifiers[index]; }
size_t numberOfConstantRegisters() const { return m_constantRegisters.size(); }
unsigned addConstant(JSValue v)
{
unsigned result = m_constantRegisters.size();
m_constantRegisters.append(WriteBarrier<Unknown>());
m_constantRegisters.last().set(m_globalObject->vm(), m_ownerExecutable.get(), v);
return result;
}
unsigned addOrFindConstant(JSValue);
WriteBarrier<Unknown>& constantRegister(int index) { return m_constantRegisters[index - FirstConstantRegisterIndex]; }
ALWAYS_INLINE bool isConstantRegisterIndex(int index) const { return index >= FirstConstantRegisterIndex; }
ALWAYS_INLINE JSValue getConstant(int index) const { return m_constantRegisters[index - FirstConstantRegisterIndex].get(); }
FunctionExecutable* functionDecl(int index) { return m_functionDecls[index].get(); }
int numberOfFunctionDecls() { return m_functionDecls.size(); }
FunctionExecutable* functionExpr(int index) { return m_functionExprs[index].get(); }
RegExp* regexp(int index) const { return m_unlinkedCode->regexp(index); }
unsigned numberOfConstantBuffers() const
{
if (!m_rareData)
return 0;
return m_rareData->m_constantBuffers.size();
}
unsigned addConstantBuffer(const Vector<JSValue>& buffer)
{
createRareDataIfNecessary();
unsigned size = m_rareData->m_constantBuffers.size();
m_rareData->m_constantBuffers.append(buffer);
return size;
}
Vector<JSValue>& constantBufferAsVector(unsigned index)
{
ASSERT(m_rareData);
return m_rareData->m_constantBuffers[index];
}
JSValue* constantBuffer(unsigned index)
{
return constantBufferAsVector(index).data();
}
JSGlobalObject* globalObject() { return m_globalObject.get(); }
JSGlobalObject* globalObjectFor(CodeOrigin);
// Jump Tables
size_t numberOfImmediateSwitchJumpTables() const { return m_rareData ? m_rareData->m_immediateSwitchJumpTables.size() : 0; }
SimpleJumpTable& addImmediateSwitchJumpTable() { createRareDataIfNecessary(); m_rareData->m_immediateSwitchJumpTables.append(SimpleJumpTable()); return m_rareData->m_immediateSwitchJumpTables.last(); }
SimpleJumpTable& immediateSwitchJumpTable(int tableIndex) { RELEASE_ASSERT(m_rareData); return m_rareData->m_immediateSwitchJumpTables[tableIndex]; }
size_t numberOfCharacterSwitchJumpTables() const { return m_rareData ? m_rareData->m_characterSwitchJumpTables.size() : 0; }
SimpleJumpTable& addCharacterSwitchJumpTable() { createRareDataIfNecessary(); m_rareData->m_characterSwitchJumpTables.append(SimpleJumpTable()); return m_rareData->m_characterSwitchJumpTables.last(); }
SimpleJumpTable& characterSwitchJumpTable(int tableIndex) { RELEASE_ASSERT(m_rareData); return m_rareData->m_characterSwitchJumpTables[tableIndex]; }
size_t numberOfStringSwitchJumpTables() const { return m_rareData ? m_rareData->m_stringSwitchJumpTables.size() : 0; }
StringJumpTable& addStringSwitchJumpTable() { createRareDataIfNecessary(); m_rareData->m_stringSwitchJumpTables.append(StringJumpTable()); return m_rareData->m_stringSwitchJumpTables.last(); }
StringJumpTable& stringSwitchJumpTable(int tableIndex) { RELEASE_ASSERT(m_rareData); return m_rareData->m_stringSwitchJumpTables[tableIndex]; }
SharedSymbolTable* symbolTable() const { return m_unlinkedCode->symbolTable(); }
EvalCodeCache& evalCodeCache() { createRareDataIfNecessary(); return m_rareData->m_evalCodeCache; }
enum ShrinkMode {
// Shrink prior to generating machine code that may point directly into vectors.
EarlyShrink,
// Shrink after generating machine code, and after possibly creating new vectors
// and appending to others. At this time it is not safe to shrink certain vectors
// because we would have generated machine code that references them directly.
LateShrink
};
void shrinkToFit(ShrinkMode);
void copyPostParseDataFrom(CodeBlock* alternative);
void copyPostParseDataFromAlternative();
// Functions for controlling when JITting kicks in, in a mixed mode
// execution world.
bool checkIfJITThresholdReached()
{
return m_llintExecuteCounter.checkIfThresholdCrossedAndSet(this);
}
void dontJITAnytimeSoon()
{
m_llintExecuteCounter.deferIndefinitely();
}
void jitAfterWarmUp()
{
m_llintExecuteCounter.setNewThreshold(Options::thresholdForJITAfterWarmUp(), this);
}
void jitSoon()
{
m_llintExecuteCounter.setNewThreshold(Options::thresholdForJITSoon(), this);
}
const ExecutionCounter& llintExecuteCounter() const
{
return m_llintExecuteCounter;
}
// Functions for controlling when tiered compilation kicks in. This
// controls both when the optimizing compiler is invoked and when OSR
// entry happens. Two triggers exist: the loop trigger and the return
// trigger. In either case, when an addition to m_jitExecuteCounter
// causes it to become non-negative, the optimizing compiler is
// invoked. This includes a fast check to see if this CodeBlock has
// already been optimized (i.e. replacement() returns a CodeBlock
// that was optimized with a higher tier JIT than this one). In the
// case of the loop trigger, if the optimized compilation succeeds
// (or has already succeeded in the past) then OSR is attempted to
// redirect program flow into the optimized code.
// These functions are called from within the optimization triggers,
// and are used as a single point at which we define the heuristics
// for how much warm-up is mandated before the next optimization
// trigger files. All CodeBlocks start out with optimizeAfterWarmUp(),
// as this is called from the CodeBlock constructor.
// When we observe a lot of speculation failures, we trigger a
// reoptimization. But each time, we increase the optimization trigger
// to avoid thrashing.
unsigned reoptimizationRetryCounter() const;
void countReoptimization();
unsigned numberOfDFGCompiles();
int32_t codeTypeThresholdMultiplier() const;
int32_t counterValueForOptimizeAfterWarmUp();
int32_t counterValueForOptimizeAfterLongWarmUp();
int32_t counterValueForOptimizeSoon();
int32_t* addressOfJITExecuteCounter()
{
return &m_jitExecuteCounter.m_counter;
}
static ptrdiff_t offsetOfJITExecuteCounter() { return OBJECT_OFFSETOF(CodeBlock, m_jitExecuteCounter) + OBJECT_OFFSETOF(ExecutionCounter, m_counter); }
static ptrdiff_t offsetOfJITExecutionActiveThreshold() { return OBJECT_OFFSETOF(CodeBlock, m_jitExecuteCounter) + OBJECT_OFFSETOF(ExecutionCounter, m_activeThreshold); }
static ptrdiff_t offsetOfJITExecutionTotalCount() { return OBJECT_OFFSETOF(CodeBlock, m_jitExecuteCounter) + OBJECT_OFFSETOF(ExecutionCounter, m_totalCount); }
const ExecutionCounter& jitExecuteCounter() const { return m_jitExecuteCounter; }
unsigned optimizationDelayCounter() const { return m_optimizationDelayCounter; }
// Check if the optimization threshold has been reached, and if not,
// adjust the heuristics accordingly. Returns true if the threshold has
// been reached.
bool checkIfOptimizationThresholdReached();
// Call this to force the next optimization trigger to fire. This is
// rarely wise, since optimization triggers are typically more
// expensive than executing baseline code.
void optimizeNextInvocation();
// Call this to prevent optimization from happening again. Note that
// optimization will still happen after roughly 2^29 invocations,
// so this is really meant to delay that as much as possible. This
// is called if optimization failed, and we expect it to fail in
// the future as well.
void dontOptimizeAnytimeSoon();
// Call this to reinitialize the counter to its starting state,
// forcing a warm-up to happen before the next optimization trigger
// fires. This is called in the CodeBlock constructor. It also
// makes sense to call this if an OSR exit occurred. Note that
// OSR exit code is code generated, so the value of the execute
// counter that this corresponds to is also available directly.
void optimizeAfterWarmUp();
// Call this to force an optimization trigger to fire only after
// a lot of warm-up.
void optimizeAfterLongWarmUp();
// Call this to cause an optimization trigger to fire soon, but
// not necessarily the next one. This makes sense if optimization
// succeeds. Successfuly optimization means that all calls are
// relinked to the optimized code, so this only affects call
// frames that are still executing this CodeBlock. The value here
// is tuned to strike a balance between the cost of OSR entry
// (which is too high to warrant making every loop back edge to
// trigger OSR immediately) and the cost of executing baseline
// code (which is high enough that we don't necessarily want to
// have a full warm-up). The intuition for calling this instead of
// optimizeNextInvocation() is for the case of recursive functions
// with loops. Consider that there may be N call frames of some
// recursive function, for a reasonably large value of N. The top
// one triggers optimization, and then returns, and then all of
// the others return. We don't want optimization to be triggered on
// each return, as that would be superfluous. It only makes sense
// to trigger optimization if one of those functions becomes hot
// in the baseline code.
void optimizeSoon();
uint32_t osrExitCounter() const { return m_osrExitCounter; }
void countOSRExit() { m_osrExitCounter++; }
uint32_t* addressOfOSRExitCounter() { return &m_osrExitCounter; }
static ptrdiff_t offsetOfOSRExitCounter() { return OBJECT_OFFSETOF(CodeBlock, m_osrExitCounter); }
#if ENABLE(JIT)
uint32_t adjustedExitCountThreshold(uint32_t desiredThreshold);
uint32_t exitCountThresholdForReoptimization();
uint32_t exitCountThresholdForReoptimizationFromLoop();
bool shouldReoptimizeNow();
bool shouldReoptimizeFromLoopNow();
#endif
#if ENABLE(VALUE_PROFILER)
bool shouldOptimizeNow();
void updateAllValueProfilePredictions(OperationInProgress = NoOperation);
void updateAllArrayPredictions(OperationInProgress = NoOperation);
void updateAllPredictions(OperationInProgress = NoOperation);
#else
bool shouldOptimizeNow() { return false; }
void updateAllValueProfilePredictions(OperationInProgress = NoOperation) { }
void updateAllArrayPredictions(OperationInProgress = NoOperation) { }
void updateAllPredictions(OperationInProgress = NoOperation) { }
#endif
#if ENABLE(JIT)
void reoptimize();
#endif
#if ENABLE(VERBOSE_VALUE_PROFILE)
void dumpValueProfiles();
#endif
// FIXME: Make these remaining members private.
int m_numCalleeRegisters;
int m_numVars;
bool m_isConstructor;
protected:
#if ENABLE(JIT)
virtual bool jitCompileImpl(ExecState*) = 0;
virtual void jettisonImpl() = 0;
#endif
virtual void visitWeakReferences(SlotVisitor&);
virtual void finalizeUnconditionally();
#if ENABLE(DFG_JIT)
void tallyFrequentExitSites();
#else
void tallyFrequentExitSites() { }
#endif
private:
friend class DFGCodeBlocks;
double optimizationThresholdScalingFactor();
#if ENABLE(JIT)
ClosureCallStubRoutine* findClosureCallForReturnPC(ReturnAddressPtr);
#endif
#if ENABLE(VALUE_PROFILER)
void updateAllPredictionsAndCountLiveness(OperationInProgress, unsigned& numberOfLiveNonArgumentValueProfiles, unsigned& numberOfSamplesInProfiles);
#endif
void setIdentifiers(const Vector<Identifier>& identifiers)
{
RELEASE_ASSERT(m_identifiers.isEmpty());
m_identifiers.appendVector(identifiers);
}
void setConstantRegisters(const Vector<WriteBarrier<Unknown> >& constants)
{
size_t count = constants.size();
m_constantRegisters.resize(count);
for (size_t i = 0; i < count; i++)
m_constantRegisters[i].set(*m_vm, ownerExecutable(), constants[i].get());
}
void dumpBytecode(PrintStream&, ExecState*, const Instruction* begin, const Instruction*&);
CString registerName(ExecState*, int r) const;
void printUnaryOp(PrintStream&, ExecState*, int location, const Instruction*&, const char* op);
void printBinaryOp(PrintStream&, ExecState*, int location, const Instruction*&, const char* op);
void printConditionalJump(PrintStream&, ExecState*, const Instruction*, const Instruction*&, int location, const char* op);
void printGetByIdOp(PrintStream&, ExecState*, int location, const Instruction*&);
void printGetByIdCacheStatus(PrintStream&, ExecState*, int location);
enum CacheDumpMode { DumpCaches, DontDumpCaches };
void printCallOp(PrintStream&, ExecState*, int location, const Instruction*&, const char* op, CacheDumpMode);
void printPutByIdOp(PrintStream&, ExecState*, int location, const Instruction*&, const char* op);
void beginDumpProfiling(PrintStream&, bool& hasPrintedProfiling);
void dumpValueProfiling(PrintStream&, const Instruction*&, bool& hasPrintedProfiling);
void dumpArrayProfiling(PrintStream&, const Instruction*&, bool& hasPrintedProfiling);
#if ENABLE(VALUE_PROFILER)
void dumpRareCaseProfile(PrintStream&, const char* name, RareCaseProfile*, bool& hasPrintedProfiling);
#endif
void visitStructures(SlotVisitor&, Instruction* vPC);
#if ENABLE(DFG_JIT)
bool shouldImmediatelyAssumeLivenessDuringScan()
{
// Null m_dfgData means that this is a baseline JIT CodeBlock. Baseline JIT
// CodeBlocks don't need to be jettisoned when their weak references go
// stale. So if a basline JIT CodeBlock gets scanned, we can assume that
// this means that it's live.
if (!m_dfgData)
return true;
// For simplicity, we don't attempt to jettison code blocks during GC if
// they are executing. Instead we strongly mark their weak references to
// allow them to continue to execute soundly.
if (m_dfgData->mayBeExecuting)
return true;
if (Options::forceDFGCodeBlockLiveness())
return true;
return false;
}
#else
bool shouldImmediatelyAssumeLivenessDuringScan() { return true; }
#endif
void performTracingFixpointIteration(SlotVisitor&);
void stronglyVisitStrongReferences(SlotVisitor&);
void stronglyVisitWeakReferences(SlotVisitor&);
void createRareDataIfNecessary()
{
if (!m_rareData)
m_rareData = adoptPtr(new RareData);
}
#if ENABLE(JIT)
void resetStubInternal(RepatchBuffer&, StructureStubInfo&);
void resetStubDuringGCInternal(RepatchBuffer&, StructureStubInfo&);
#endif
WriteBarrier<UnlinkedCodeBlock> m_unlinkedCode;
int m_numParameters;
WriteBarrier<ScriptExecutable> m_ownerExecutable;
VM* m_vm;
RefCountedArray<Instruction> m_instructions;
int m_thisRegister;
int m_argumentsRegister;
int m_activationRegister;
bool m_isStrictMode;
bool m_needsActivation;
RefPtr<SourceProvider> m_source;
unsigned m_sourceOffset;
unsigned m_firstLineColumnOffset;
unsigned m_codeType;
#if ENABLE(LLINT)
SegmentedVector<LLIntCallLinkInfo, 8> m_llintCallLinkInfos;
SentinelLinkedList<LLIntCallLinkInfo, BasicRawSentinelNode<LLIntCallLinkInfo> > m_incomingLLIntCalls;
#endif
#if ENABLE(JIT)
Vector<StructureStubInfo> m_structureStubInfos;
Vector<ByValInfo> m_byValInfos;
Vector<CallLinkInfo> m_callLinkInfos;
JITCode m_jitCode;
MacroAssemblerCodePtr m_jitCodeWithArityCheck;
SentinelLinkedList<CallLinkInfo, BasicRawSentinelNode<CallLinkInfo> > m_incomingCalls;
#endif
#if ENABLE(DFG_JIT) || ENABLE(LLINT)
OwnPtr<CompactJITCodeMap> m_jitCodeMap;
#endif
#if ENABLE(DFG_JIT)
struct WeakReferenceTransition {
WeakReferenceTransition() { }
WeakReferenceTransition(VM& vm, JSCell* owner, JSCell* codeOrigin, JSCell* from, JSCell* to)
: m_from(vm, owner, from)
, m_to(vm, owner, to)
{
if (!!codeOrigin)
m_codeOrigin.set(vm, owner, codeOrigin);
}
WriteBarrier<JSCell> m_codeOrigin;
WriteBarrier<JSCell> m_from;
WriteBarrier<JSCell> m_to;
};
struct DFGData {
DFGData()
: mayBeExecuting(false)
, isJettisoned(false)
{
}
Vector<DFG::OSREntryData> osrEntry;
SegmentedVector<DFG::OSRExit, 8> osrExit;
Vector<DFG::SpeculationRecovery> speculationRecovery;
SegmentedVector<JumpReplacementWatchpoint, 1, 0> watchpoints;
Vector<WeakReferenceTransition> transitions;
Vector<WriteBarrier<JSCell> > weakReferences;
DFG::VariableEventStream variableEventStream;
DFG::MinifiedGraph minifiedDFG;
RefPtr<Profiler::Compilation> compilation;
bool mayBeExecuting;
bool isJettisoned;
bool livenessHasBeenProved; // Initialized and used on every GC.
bool allTransitionsHaveBeenMarked; // Initialized and used on every GC.
unsigned visitAggregateHasBeenCalled; // Unsigned to make it work seamlessly with the broadest set of CAS implementations.
};
OwnPtr<DFGData> m_dfgData;
// This is relevant to non-DFG code blocks that serve as the profiled code block
// for DFG code blocks.
DFG::ExitProfile m_exitProfile;
CompressedLazyOperandValueProfileHolder m_lazyOperandValueProfiles;
#endif
#if ENABLE(VALUE_PROFILER)
Vector<ValueProfile> m_argumentValueProfiles;
SegmentedVector<ValueProfile, 8> m_valueProfiles;
SegmentedVector<RareCaseProfile, 8> m_rareCaseProfiles;
SegmentedVector<RareCaseProfile, 8> m_specialFastCaseProfiles;
SegmentedVector<ArrayAllocationProfile, 8> m_arrayAllocationProfiles;
ArrayProfileVector m_arrayProfiles;
#endif
SegmentedVector<ObjectAllocationProfile, 8> m_objectAllocationProfiles;
// Constant Pool
Vector<Identifier> m_identifiers;
COMPILE_ASSERT(sizeof(Register) == sizeof(WriteBarrier<Unknown>), Register_must_be_same_size_as_WriteBarrier_Unknown);
// TODO: This could just be a pointer to m_unlinkedCodeBlock's data, but the DFG mutates
// it, so we're stuck with it for now.
Vector<WriteBarrier<Unknown> > m_constantRegisters;
Vector<WriteBarrier<FunctionExecutable> > m_functionDecls;
Vector<WriteBarrier<FunctionExecutable> > m_functionExprs;
OwnPtr<CodeBlock> m_alternative;
ExecutionCounter m_llintExecuteCounter;
ExecutionCounter m_jitExecuteCounter;
int32_t m_totalJITExecutions;
uint32_t m_osrExitCounter;
uint16_t m_optimizationDelayCounter;
uint16_t m_reoptimizationRetryCounter;
Vector<ResolveOperations> m_resolveOperations;
Vector<PutToBaseOperation, 1> m_putToBaseOperations;
struct RareData {
WTF_MAKE_FAST_ALLOCATED;
public:
Vector<HandlerInfo> m_exceptionHandlers;
// Buffers used for large array literals
Vector<Vector<JSValue> > m_constantBuffers;
// Jump Tables
Vector<SimpleJumpTable> m_immediateSwitchJumpTables;
Vector<SimpleJumpTable> m_characterSwitchJumpTables;
Vector<StringJumpTable> m_stringSwitchJumpTables;
EvalCodeCache m_evalCodeCache;
#if ENABLE(JIT)
Vector<CallReturnOffsetToBytecodeOffset, 0, UnsafeVectorOverflow> m_callReturnIndexVector;
#endif
#if ENABLE(DFG_JIT)
SegmentedVector<InlineCallFrame, 4> m_inlineCallFrames;
Vector<CodeOriginAtCallReturnOffset, 0, UnsafeVectorOverflow> m_codeOrigins;
#endif
};
#if COMPILER(MSVC)
friend void WTF::deleteOwnedPtr<RareData>(RareData*);
#endif
OwnPtr<RareData> m_rareData;
#if ENABLE(JIT)
DFG::CapabilityLevel m_canCompileWithDFGState;
#endif
};
// Program code is not marked by any function, so we make the global object
// responsible for marking it.
class GlobalCodeBlock : public CodeBlock {
protected:
GlobalCodeBlock(CopyParsedBlockTag, GlobalCodeBlock& other)
: CodeBlock(CopyParsedBlock, other)
{
}
GlobalCodeBlock(ScriptExecutable* ownerExecutable, UnlinkedCodeBlock* unlinkedCodeBlock, JSGlobalObject* globalObject, unsigned baseScopeDepth, PassRefPtr<SourceProvider> sourceProvider, unsigned sourceOffset, unsigned firstLineColumnOffset, PassOwnPtr<CodeBlock> alternative)
: CodeBlock(ownerExecutable, unlinkedCodeBlock, globalObject, baseScopeDepth, sourceProvider, sourceOffset, firstLineColumnOffset, alternative)
{
}
};
class ProgramCodeBlock : public GlobalCodeBlock {
public:
ProgramCodeBlock(CopyParsedBlockTag, ProgramCodeBlock& other)
: GlobalCodeBlock(CopyParsedBlock, other)
{
}
ProgramCodeBlock(ProgramExecutable* ownerExecutable, UnlinkedProgramCodeBlock* unlinkedCodeBlock, JSGlobalObject* globalObject, PassRefPtr<SourceProvider> sourceProvider, unsigned firstLineColumnOffset, PassOwnPtr<CodeBlock> alternative)
: GlobalCodeBlock(ownerExecutable, unlinkedCodeBlock, globalObject, 0, sourceProvider, 0, firstLineColumnOffset, alternative)
{
}
#if ENABLE(JIT)
protected:
virtual JSObject* compileOptimized(ExecState*, JSScope*, unsigned bytecodeIndex);
virtual void jettisonImpl();
virtual bool jitCompileImpl(ExecState*);
virtual CodeBlock* replacement();
virtual DFG::CapabilityLevel canCompileWithDFGInternal();
#endif
};
class EvalCodeBlock : public GlobalCodeBlock {
public:
EvalCodeBlock(CopyParsedBlockTag, EvalCodeBlock& other)
: GlobalCodeBlock(CopyParsedBlock, other)
{
}
EvalCodeBlock(EvalExecutable* ownerExecutable, UnlinkedEvalCodeBlock* unlinkedCodeBlock, JSGlobalObject* globalObject, PassRefPtr<SourceProvider> sourceProvider, int baseScopeDepth, PassOwnPtr<CodeBlock> alternative)
: GlobalCodeBlock(ownerExecutable, unlinkedCodeBlock, globalObject, baseScopeDepth, sourceProvider, 0, 1, alternative)
{
}
const Identifier& variable(unsigned index) { return unlinkedEvalCodeBlock()->variable(index); }
unsigned numVariables() { return unlinkedEvalCodeBlock()->numVariables(); }
#if ENABLE(JIT)
protected:
virtual JSObject* compileOptimized(ExecState*, JSScope*, unsigned bytecodeIndex);
virtual void jettisonImpl();
virtual bool jitCompileImpl(ExecState*);
virtual CodeBlock* replacement();
virtual DFG::CapabilityLevel canCompileWithDFGInternal();
#endif
private:
UnlinkedEvalCodeBlock* unlinkedEvalCodeBlock() const { return jsCast<UnlinkedEvalCodeBlock*>(unlinkedCodeBlock()); }
};
class FunctionCodeBlock : public CodeBlock {
public:
FunctionCodeBlock(CopyParsedBlockTag, FunctionCodeBlock& other)
: CodeBlock(CopyParsedBlock, other)
{
}
FunctionCodeBlock(FunctionExecutable* ownerExecutable, UnlinkedFunctionCodeBlock* unlinkedCodeBlock, JSGlobalObject* globalObject, PassRefPtr<SourceProvider> sourceProvider, unsigned sourceOffset, unsigned firstLineColumnOffset, PassOwnPtr<CodeBlock> alternative = nullptr)
: CodeBlock(ownerExecutable, unlinkedCodeBlock, globalObject, 0, sourceProvider, sourceOffset, firstLineColumnOffset, alternative)
{
}
#if ENABLE(JIT)
protected:
virtual JSObject* compileOptimized(ExecState*, JSScope*, unsigned bytecodeIndex);
virtual void jettisonImpl();
virtual bool jitCompileImpl(ExecState*);
virtual CodeBlock* replacement();
virtual DFG::CapabilityLevel canCompileWithDFGInternal();
#endif
};
inline CodeBlock* baselineCodeBlockForInlineCallFrame(InlineCallFrame* inlineCallFrame)
{
RELEASE_ASSERT(inlineCallFrame);
ExecutableBase* executable = inlineCallFrame->executable.get();
RELEASE_ASSERT(executable->structure()->classInfo() == &FunctionExecutable::s_info);
return static_cast<FunctionExecutable*>(executable)->baselineCodeBlockFor(inlineCallFrame->isCall ? CodeForCall : CodeForConstruct);
}
inline CodeBlock* baselineCodeBlockForOriginAndBaselineCodeBlock(const CodeOrigin& codeOrigin, CodeBlock* baselineCodeBlock)
{
if (codeOrigin.inlineCallFrame)
return baselineCodeBlockForInlineCallFrame(codeOrigin.inlineCallFrame);
return baselineCodeBlock;
}
inline int CodeBlock::argumentIndexAfterCapture(size_t argument)
{
if (argument >= static_cast<size_t>(symbolTable()->parameterCount()))
return CallFrame::argumentOffset(argument);
const SlowArgument* slowArguments = symbolTable()->slowArguments();
if (!slowArguments || slowArguments[argument].status == SlowArgument::Normal)
return CallFrame::argumentOffset(argument);
ASSERT(slowArguments[argument].status == SlowArgument::Captured);
return slowArguments[argument].index;
}
inline Register& ExecState::r(int index)
{
CodeBlock* codeBlock = this->codeBlock();
if (codeBlock->isConstantRegisterIndex(index))
return *reinterpret_cast<Register*>(&codeBlock->constantRegister(index));
return this[index];
}
inline Register& ExecState::uncheckedR(int index)
{
RELEASE_ASSERT(index < FirstConstantRegisterIndex);
return this[index];
}
#if ENABLE(DFG_JIT)
inline bool ExecState::isInlineCallFrame()
{
if (LIKELY(!codeBlock() || codeBlock()->getJITType() != JITCode::DFGJIT))
return false;
return isInlineCallFrameSlow();
}
#endif
inline JSValue ExecState::argumentAfterCapture(size_t argument)
{
if (argument >= argumentCount())
return jsUndefined();
if (!codeBlock())
return this[argumentOffset(argument)].jsValue();
return this[codeBlock()->argumentIndexAfterCapture(argument)].jsValue();
}
#if ENABLE(DFG_JIT)
inline void DFGCodeBlocks::mark(void* candidateCodeBlock)
{
// We have to check for 0 and -1 because those are used by the HashMap as markers.
uintptr_t value = reinterpret_cast<uintptr_t>(candidateCodeBlock);
// This checks for both of those nasty cases in one go.
// 0 + 1 = 1
// -1 + 1 = 0
if (value + 1 <= 1)
return;
HashSet<CodeBlock*>::iterator iter = m_set.find(static_cast<CodeBlock*>(candidateCodeBlock));
if (iter == m_set.end())
return;
(*iter)->m_dfgData->mayBeExecuting = true;
}
#endif
} // namespace JSC
#endif // CodeBlock_h
|