1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 721 722 723 724 725 726 727 728 729 730 731 732 733 734 735 736 737 738 739 740 741 742 743 744 745 746 747 748 749 750 751 752 753 754 755 756 757 758 759 760 761 762 763 764 765 766 767 768 769 770 771 772 773 774 775 776 777 778 779 780 781 782 783 784 785 786 787 788 789 790 791 792 793 794 795 796 797 798 799 800 801 802 803 804 805 806 807 808 809 810 811 812 813 814 815 816 817 818 819 820 821 822 823 824 825 826 827 828 829 830 831 832 833 834 835 836 837 838 839 840 841 842 843 844 845 846 847 848 849 850 851 852 853 854 855 856 857 858 859 860 861 862 863 864 865 866 867 868 869 870 871 872 873 874 875 876 877 878 879 880 881 882 883 884 885 886 887 888 889 890 891 892 893 894 895 896
|
/*
* Copyright (C) 2003, 2004, 2005, 2006, 2007, 2008, 2009, 2011 Apple Inc. All rights reserved.
* Copyright (C) 2007 Eric Seidel <eric@webkit.org>
*
* This library is free software; you can redistribute it and/or
* modify it under the terms of the GNU Lesser General Public
* License as published by the Free Software Foundation; either
* version 2 of the License, or (at your option) any later version.
*
* This library is distributed in the hope that it will be useful,
* but WITHOUT ANY WARRANTY; without even the implied warranty of
* MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU
* Lesser General Public License for more details.
*
* You should have received a copy of the GNU Lesser General Public
* License along with this library; if not, write to the Free Software
* Foundation, Inc., 51 Franklin Street, Fifth Floor, Boston, MA 02110-1301 USA
*
*/
#include "config.h"
#include "Heap.h"
#include "CodeBlock.h"
#include "ConservativeRoots.h"
#include "CopiedSpace.h"
#include "CopiedSpaceInlines.h"
#include "CopyVisitorInlines.h"
#include "GCActivityCallback.h"
#include "HeapRootVisitor.h"
#include "HeapStatistics.h"
#include "IncrementalSweeper.h"
#include "Interpreter.h"
#include "VM.h"
#include "JSGlobalObject.h"
#include "JSLock.h"
#include "JSONObject.h"
#include "Operations.h"
#include "Tracing.h"
#include "UnlinkedCodeBlock.h"
#include "WeakSetInlines.h"
#include <algorithm>
#include <wtf/RAMSize.h>
#include <wtf/CurrentTime.h>
using namespace std;
using namespace JSC;
namespace JSC {
namespace {
static const size_t largeHeapSize = 32 * MB; // About 1.5X the average webpage.
static const size_t smallHeapSize = 1 * MB; // Matches the FastMalloc per-thread cache.
#if ENABLE(GC_LOGGING)
#if COMPILER(CLANG)
#define DEFINE_GC_LOGGING_GLOBAL(type, name, arguments) \
_Pragma("clang diagnostic push") \
_Pragma("clang diagnostic ignored \"-Wglobal-constructors\"") \
_Pragma("clang diagnostic ignored \"-Wexit-time-destructors\"") \
static type name arguments; \
_Pragma("clang diagnostic pop")
#else
#define DEFINE_GC_LOGGING_GLOBAL(type, name, arguments) \
static type name arguments;
#endif // COMPILER(CLANG)
struct GCTimer {
GCTimer(const char* name)
: m_time(0)
, m_min(100000000)
, m_max(0)
, m_count(0)
, m_name(name)
{
}
~GCTimer()
{
dataLogF("%s: %.2lfms (avg. %.2lf, min. %.2lf, max. %.2lf)\n", m_name, m_time * 1000, m_time * 1000 / m_count, m_min*1000, m_max*1000);
}
double m_time;
double m_min;
double m_max;
size_t m_count;
const char* m_name;
};
struct GCTimerScope {
GCTimerScope(GCTimer* timer)
: m_timer(timer)
, m_start(WTF::currentTime())
{
}
~GCTimerScope()
{
double delta = WTF::currentTime() - m_start;
if (delta < m_timer->m_min)
m_timer->m_min = delta;
if (delta > m_timer->m_max)
m_timer->m_max = delta;
m_timer->m_count++;
m_timer->m_time += delta;
}
GCTimer* m_timer;
double m_start;
};
struct GCCounter {
GCCounter(const char* name)
: m_name(name)
, m_count(0)
, m_total(0)
, m_min(10000000)
, m_max(0)
{
}
void count(size_t amount)
{
m_count++;
m_total += amount;
if (amount < m_min)
m_min = amount;
if (amount > m_max)
m_max = amount;
}
~GCCounter()
{
dataLogF("%s: %zu values (avg. %zu, min. %zu, max. %zu)\n", m_name, m_total, m_total / m_count, m_min, m_max);
}
const char* m_name;
size_t m_count;
size_t m_total;
size_t m_min;
size_t m_max;
};
#define GCPHASE(name) DEFINE_GC_LOGGING_GLOBAL(GCTimer, name##Timer, (#name)); GCTimerScope name##TimerScope(&name##Timer)
#define COND_GCPHASE(cond, name1, name2) DEFINE_GC_LOGGING_GLOBAL(GCTimer, name1##Timer, (#name1)); DEFINE_GC_LOGGING_GLOBAL(GCTimer, name2##Timer, (#name2)); GCTimerScope name1##CondTimerScope(cond ? &name1##Timer : &name2##Timer)
#define GCCOUNTER(name, value) do { DEFINE_GC_LOGGING_GLOBAL(GCCounter, name##Counter, (#name)); name##Counter.count(value); } while (false)
#else
#define GCPHASE(name) do { } while (false)
#define COND_GCPHASE(cond, name1, name2) do { } while (false)
#define GCCOUNTER(name, value) do { } while (false)
#endif
static inline size_t minHeapSize(HeapType heapType, size_t ramSize)
{
if (heapType == LargeHeap)
return min(largeHeapSize, ramSize / 4);
return smallHeapSize;
}
static inline size_t proportionalHeapSize(size_t heapSize, size_t ramSize)
{
// Try to stay under 1/2 RAM size to leave room for the DOM, rendering, networking, etc.
if (heapSize < ramSize / 4)
return 2 * heapSize;
if (heapSize < ramSize / 2)
return 1.5 * heapSize;
return 1.25 * heapSize;
}
static inline bool isValidSharedInstanceThreadState(VM* vm)
{
return vm->apiLock().currentThreadIsHoldingLock();
}
static inline bool isValidThreadState(VM* vm)
{
if (vm->identifierTable != wtfThreadData().currentIdentifierTable())
return false;
if (vm->isSharedInstance() && !isValidSharedInstanceThreadState(vm))
return false;
return true;
}
struct MarkObject : public MarkedBlock::VoidFunctor {
void operator()(JSCell* cell)
{
if (cell->isZapped())
return;
Heap::heap(cell)->setMarked(cell);
}
};
struct Count : public MarkedBlock::CountFunctor {
void operator()(JSCell*) { count(1); }
};
struct CountIfGlobalObject : MarkedBlock::CountFunctor {
void operator()(JSCell* cell) {
if (!cell->isObject())
return;
if (!asObject(cell)->isGlobalObject())
return;
count(1);
}
};
class RecordType {
public:
typedef PassOwnPtr<TypeCountSet> ReturnType;
RecordType();
void operator()(JSCell*);
ReturnType returnValue();
private:
const char* typeName(JSCell*);
OwnPtr<TypeCountSet> m_typeCountSet;
};
inline RecordType::RecordType()
: m_typeCountSet(adoptPtr(new TypeCountSet))
{
}
inline const char* RecordType::typeName(JSCell* cell)
{
const ClassInfo* info = cell->classInfo();
if (!info || !info->className)
return "[unknown]";
return info->className;
}
inline void RecordType::operator()(JSCell* cell)
{
m_typeCountSet->add(typeName(cell));
}
inline PassOwnPtr<TypeCountSet> RecordType::returnValue()
{
return m_typeCountSet.release();
}
} // anonymous namespace
Heap::Heap(VM* vm, HeapType heapType)
: m_heapType(heapType)
, m_ramSize(ramSize())
, m_minBytesPerCycle(minHeapSize(m_heapType, m_ramSize))
, m_sizeAfterLastCollect(0)
, m_bytesAllocatedLimit(m_minBytesPerCycle)
, m_bytesAllocated(0)
, m_bytesAbandoned(0)
, m_operationInProgress(NoOperation)
, m_blockAllocator()
, m_objectSpace(this)
, m_storageSpace(this)
, m_machineThreads(this)
, m_sharedData(vm)
, m_slotVisitor(m_sharedData)
, m_copyVisitor(m_sharedData)
, m_handleSet(vm)
, m_isSafeToCollect(false)
, m_vm(vm)
, m_lastGCLength(0)
, m_lastCodeDiscardTime(WTF::currentTime())
, m_activityCallback(DefaultGCActivityCallback::create(this))
, m_sweeper(IncrementalSweeper::create(this))
{
m_storageSpace.init();
}
Heap::~Heap()
{
}
bool Heap::isPagedOut(double deadline)
{
return m_objectSpace.isPagedOut(deadline) || m_storageSpace.isPagedOut(deadline);
}
// The VM is being destroyed and the collector will never run again.
// Run all pending finalizers now because we won't get another chance.
void Heap::lastChanceToFinalize()
{
RELEASE_ASSERT(!m_vm->dynamicGlobalObject);
RELEASE_ASSERT(m_operationInProgress == NoOperation);
m_objectSpace.lastChanceToFinalize();
#if ENABLE(SIMPLE_HEAP_PROFILING)
m_slotVisitor.m_visitedTypeCounts.dump(WTF::dataFile(), "Visited Type Counts");
m_destroyedTypeCounts.dump(WTF::dataFile(), "Destroyed Type Counts");
#endif
}
void Heap::reportExtraMemoryCostSlowCase(size_t cost)
{
// Our frequency of garbage collection tries to balance memory use against speed
// by collecting based on the number of newly created values. However, for values
// that hold on to a great deal of memory that's not in the form of other JS values,
// that is not good enough - in some cases a lot of those objects can pile up and
// use crazy amounts of memory without a GC happening. So we track these extra
// memory costs. Only unusually large objects are noted, and we only keep track
// of this extra cost until the next GC. In garbage collected languages, most values
// are either very short lived temporaries, or have extremely long lifetimes. So
// if a large value survives one garbage collection, there is not much point to
// collecting more frequently as long as it stays alive.
didAllocate(cost);
if (shouldCollect())
collect(DoNotSweep);
}
void Heap::reportAbandonedObjectGraph()
{
// Our clients don't know exactly how much memory they
// are abandoning so we just guess for them.
double abandonedBytes = 0.10 * m_sizeAfterLastCollect;
// We want to accelerate the next collection. Because memory has just
// been abandoned, the next collection has the potential to
// be more profitable. Since allocation is the trigger for collection,
// we hasten the next collection by pretending that we've allocated more memory.
didAbandon(abandonedBytes);
}
void Heap::didAbandon(size_t bytes)
{
m_activityCallback->didAllocate(m_bytesAllocated + m_bytesAbandoned);
m_bytesAbandoned += bytes;
}
void Heap::protect(JSValue k)
{
ASSERT(k);
ASSERT(m_vm->apiLock().currentThreadIsHoldingLock());
if (!k.isCell())
return;
m_protectedValues.add(k.asCell());
}
bool Heap::unprotect(JSValue k)
{
ASSERT(k);
ASSERT(m_vm->apiLock().currentThreadIsHoldingLock());
if (!k.isCell())
return false;
return m_protectedValues.remove(k.asCell());
}
void Heap::jettisonDFGCodeBlock(PassOwnPtr<CodeBlock> codeBlock)
{
m_dfgCodeBlocks.jettison(codeBlock);
}
void Heap::markProtectedObjects(HeapRootVisitor& heapRootVisitor)
{
ProtectCountSet::iterator end = m_protectedValues.end();
for (ProtectCountSet::iterator it = m_protectedValues.begin(); it != end; ++it)
heapRootVisitor.visit(&it->key);
}
void Heap::pushTempSortVector(Vector<ValueStringPair, 0, UnsafeVectorOverflow>* tempVector)
{
m_tempSortingVectors.append(tempVector);
}
void Heap::popTempSortVector(Vector<ValueStringPair, 0, UnsafeVectorOverflow>* tempVector)
{
ASSERT_UNUSED(tempVector, tempVector == m_tempSortingVectors.last());
m_tempSortingVectors.removeLast();
}
void Heap::markTempSortVectors(HeapRootVisitor& heapRootVisitor)
{
typedef Vector<Vector<ValueStringPair, 0, UnsafeVectorOverflow>* > VectorOfValueStringVectors;
VectorOfValueStringVectors::iterator end = m_tempSortingVectors.end();
for (VectorOfValueStringVectors::iterator it = m_tempSortingVectors.begin(); it != end; ++it) {
Vector<ValueStringPair, 0, UnsafeVectorOverflow>* tempSortingVector = *it;
Vector<ValueStringPair>::iterator vectorEnd = tempSortingVector->end();
for (Vector<ValueStringPair>::iterator vectorIt = tempSortingVector->begin(); vectorIt != vectorEnd; ++vectorIt) {
if (vectorIt->first)
heapRootVisitor.visit(&vectorIt->first);
}
}
}
void Heap::harvestWeakReferences()
{
m_slotVisitor.harvestWeakReferences();
}
void Heap::finalizeUnconditionalFinalizers()
{
m_slotVisitor.finalizeUnconditionalFinalizers();
}
inline JSStack& Heap::stack()
{
return m_vm->interpreter->stack();
}
void Heap::canonicalizeCellLivenessData()
{
m_objectSpace.canonicalizeCellLivenessData();
}
void Heap::getConservativeRegisterRoots(HashSet<JSCell*>& roots)
{
ASSERT(isValidThreadState(m_vm));
ConservativeRoots stackRoots(&m_objectSpace.blocks(), &m_storageSpace);
stack().gatherConservativeRoots(stackRoots);
size_t stackRootCount = stackRoots.size();
JSCell** registerRoots = stackRoots.roots();
for (size_t i = 0; i < stackRootCount; i++) {
setMarked(registerRoots[i]);
roots.add(registerRoots[i]);
}
}
void Heap::markRoots()
{
SamplingRegion samplingRegion("Garbage Collection: Tracing");
GCPHASE(MarkRoots);
ASSERT(isValidThreadState(m_vm));
#if ENABLE(OBJECT_MARK_LOGGING)
double gcStartTime = WTF::currentTime();
#endif
void* dummy;
// We gather conservative roots before clearing mark bits because conservative
// gathering uses the mark bits to determine whether a reference is valid.
ConservativeRoots machineThreadRoots(&m_objectSpace.blocks(), &m_storageSpace);
m_jitStubRoutines.clearMarks();
{
GCPHASE(GatherConservativeRoots);
m_machineThreads.gatherConservativeRoots(machineThreadRoots, &dummy);
}
ConservativeRoots stackRoots(&m_objectSpace.blocks(), &m_storageSpace);
m_dfgCodeBlocks.clearMarks();
{
GCPHASE(GatherStackRoots);
stack().gatherConservativeRoots(
stackRoots, m_jitStubRoutines, m_dfgCodeBlocks);
}
#if ENABLE(DFG_JIT)
ConservativeRoots scratchBufferRoots(&m_objectSpace.blocks(), &m_storageSpace);
{
GCPHASE(GatherScratchBufferRoots);
m_vm->gatherConservativeRoots(scratchBufferRoots);
}
#endif
{
GCPHASE(clearMarks);
m_objectSpace.clearMarks();
}
m_sharedData.didStartMarking();
SlotVisitor& visitor = m_slotVisitor;
visitor.setup();
HeapRootVisitor heapRootVisitor(visitor);
{
ParallelModeEnabler enabler(visitor);
if (m_vm->codeBlocksBeingCompiled.size()) {
GCPHASE(VisitActiveCodeBlock);
for (size_t i = 0; i < m_vm->codeBlocksBeingCompiled.size(); i++)
m_vm->codeBlocksBeingCompiled[i]->visitAggregate(visitor);
}
m_vm->smallStrings.visitStrongReferences(visitor);
{
GCPHASE(VisitMachineRoots);
MARK_LOG_ROOT(visitor, "C++ Stack");
visitor.append(machineThreadRoots);
visitor.donateAndDrain();
}
{
GCPHASE(VisitStackRoots);
MARK_LOG_ROOT(visitor, "Stack");
visitor.append(stackRoots);
visitor.donateAndDrain();
}
#if ENABLE(DFG_JIT)
{
GCPHASE(VisitScratchBufferRoots);
MARK_LOG_ROOT(visitor, "Scratch Buffers");
visitor.append(scratchBufferRoots);
visitor.donateAndDrain();
}
#endif
{
GCPHASE(VisitProtectedObjects);
MARK_LOG_ROOT(visitor, "Protected Objects");
markProtectedObjects(heapRootVisitor);
visitor.donateAndDrain();
}
{
GCPHASE(VisitTempSortVectors);
MARK_LOG_ROOT(visitor, "Temp Sort Vectors");
markTempSortVectors(heapRootVisitor);
visitor.donateAndDrain();
}
{
GCPHASE(MarkingArgumentBuffers);
if (m_markListSet && m_markListSet->size()) {
MARK_LOG_ROOT(visitor, "Argument Buffers");
MarkedArgumentBuffer::markLists(heapRootVisitor, *m_markListSet);
visitor.donateAndDrain();
}
}
if (m_vm->exception) {
GCPHASE(MarkingException);
MARK_LOG_ROOT(visitor, "Exceptions");
heapRootVisitor.visit(&m_vm->exception);
visitor.donateAndDrain();
}
{
GCPHASE(VisitStrongHandles);
MARK_LOG_ROOT(visitor, "Strong Handles");
m_handleSet.visitStrongHandles(heapRootVisitor);
visitor.donateAndDrain();
}
{
GCPHASE(HandleStack);
MARK_LOG_ROOT(visitor, "Handle Stack");
m_handleStack.visit(heapRootVisitor);
visitor.donateAndDrain();
}
{
GCPHASE(TraceCodeBlocksAndJITStubRoutines);
MARK_LOG_ROOT(visitor, "Trace Code Blocks and JIT Stub Routines");
m_dfgCodeBlocks.traceMarkedCodeBlocks(visitor);
m_jitStubRoutines.traceMarkedStubRoutines(visitor);
visitor.donateAndDrain();
}
#if ENABLE(PARALLEL_GC)
{
GCPHASE(Convergence);
visitor.drainFromShared(SlotVisitor::MasterDrain);
}
#endif
}
// Weak references must be marked last because their liveness depends on
// the liveness of the rest of the object graph.
{
GCPHASE(VisitingLiveWeakHandles);
MARK_LOG_ROOT(visitor, "Live Weak Handles");
while (true) {
m_objectSpace.visitWeakSets(heapRootVisitor);
harvestWeakReferences();
if (visitor.isEmpty())
break;
{
ParallelModeEnabler enabler(visitor);
visitor.donateAndDrain();
#if ENABLE(PARALLEL_GC)
visitor.drainFromShared(SlotVisitor::MasterDrain);
#endif
}
}
}
GCCOUNTER(VisitedValueCount, visitor.visitCount());
m_sharedData.didFinishMarking();
#if ENABLE(OBJECT_MARK_LOGGING)
size_t visitCount = visitor.visitCount();
#if ENABLE(PARALLEL_GC)
visitCount += m_sharedData.childVisitCount();
#endif
MARK_LOG_MESSAGE2("\nNumber of live Objects after full GC %lu, took %.6f secs\n", visitCount, WTF::currentTime() - gcStartTime);
#endif
visitor.reset();
#if ENABLE(PARALLEL_GC)
m_sharedData.resetChildren();
#endif
m_sharedData.reset();
}
void Heap::copyBackingStores()
{
m_storageSpace.startedCopying();
if (m_storageSpace.shouldDoCopyPhase()) {
m_sharedData.didStartCopying();
m_copyVisitor.startCopying();
m_copyVisitor.copyFromShared();
m_copyVisitor.doneCopying();
// We need to wait for everybody to finish and return their CopiedBlocks
// before signaling that the phase is complete.
m_storageSpace.doneCopying();
m_sharedData.didFinishCopying();
} else
m_storageSpace.doneCopying();
}
size_t Heap::objectCount()
{
return m_objectSpace.objectCount();
}
size_t Heap::size()
{
return m_objectSpace.size() + m_storageSpace.size();
}
size_t Heap::capacity()
{
return m_objectSpace.capacity() + m_storageSpace.capacity();
}
size_t Heap::protectedGlobalObjectCount()
{
return forEachProtectedCell<CountIfGlobalObject>();
}
size_t Heap::globalObjectCount()
{
return m_objectSpace.forEachLiveCell<CountIfGlobalObject>();
}
size_t Heap::protectedObjectCount()
{
return forEachProtectedCell<Count>();
}
PassOwnPtr<TypeCountSet> Heap::protectedObjectTypeCounts()
{
return forEachProtectedCell<RecordType>();
}
PassOwnPtr<TypeCountSet> Heap::objectTypeCounts()
{
return m_objectSpace.forEachLiveCell<RecordType>();
}
void Heap::deleteAllCompiledCode()
{
// If JavaScript is running, it's not safe to delete code, since we'll end
// up deleting code that is live on the stack.
if (m_vm->dynamicGlobalObject)
return;
for (ExecutableBase* current = m_compiledCode.head(); current; current = current->next()) {
if (!current->isFunctionExecutable())
continue;
static_cast<FunctionExecutable*>(current)->clearCodeIfNotCompiling();
}
m_dfgCodeBlocks.clearMarks();
m_dfgCodeBlocks.deleteUnmarkedJettisonedCodeBlocks();
}
void Heap::deleteUnmarkedCompiledCode()
{
ExecutableBase* next;
for (ExecutableBase* current = m_compiledCode.head(); current; current = next) {
next = current->next();
if (isMarked(current))
continue;
// We do this because executable memory is limited on some platforms and because
// CodeBlock requires eager finalization.
ExecutableBase::clearCodeVirtual(current);
m_compiledCode.remove(current);
}
m_dfgCodeBlocks.deleteUnmarkedJettisonedCodeBlocks();
m_jitStubRoutines.deleteUnmarkedJettisonedStubRoutines();
}
void Heap::collectAllGarbage()
{
if (!m_isSafeToCollect)
return;
collect(DoSweep);
}
static double minute = 60.0;
void Heap::collect(SweepToggle sweepToggle)
{
SamplingRegion samplingRegion("Garbage Collection");
GCPHASE(Collect);
ASSERT(vm()->apiLock().currentThreadIsHoldingLock());
RELEASE_ASSERT(vm()->identifierTable == wtfThreadData().currentIdentifierTable());
ASSERT(m_isSafeToCollect);
JAVASCRIPTCORE_GC_BEGIN();
RELEASE_ASSERT(m_operationInProgress == NoOperation);
m_operationInProgress = Collection;
m_activityCallback->willCollect();
double lastGCStartTime = WTF::currentTime();
if (lastGCStartTime - m_lastCodeDiscardTime > minute) {
deleteAllCompiledCode();
m_lastCodeDiscardTime = WTF::currentTime();
}
{
GCPHASE(Canonicalize);
m_objectSpace.canonicalizeCellLivenessData();
}
markRoots();
{
GCPHASE(ReapingWeakHandles);
m_objectSpace.reapWeakSets();
}
JAVASCRIPTCORE_GC_MARKED();
{
m_blockSnapshot.resize(m_objectSpace.blocks().set().size());
MarkedBlockSnapshotFunctor functor(m_blockSnapshot);
m_objectSpace.forEachBlock(functor);
}
copyBackingStores();
{
GCPHASE(FinalizeUnconditionalFinalizers);
finalizeUnconditionalFinalizers();
}
{
GCPHASE(finalizeSmallStrings);
m_vm->smallStrings.finalizeSmallStrings();
}
{
GCPHASE(DeleteCodeBlocks);
deleteUnmarkedCompiledCode();
}
{
GCPHASE(DeleteSourceProviderCaches);
m_vm->clearSourceProviderCaches();
}
if (sweepToggle == DoSweep) {
SamplingRegion samplingRegion("Garbage Collection: Sweeping");
GCPHASE(Sweeping);
m_objectSpace.sweep();
m_objectSpace.shrink();
}
m_sweeper->startSweeping(m_blockSnapshot);
m_bytesAbandoned = 0;
{
GCPHASE(ResetAllocators);
m_objectSpace.resetAllocators();
}
size_t currentHeapSize = size();
if (Options::gcMaxHeapSize() && currentHeapSize > Options::gcMaxHeapSize())
HeapStatistics::exitWithFailure();
m_sizeAfterLastCollect = currentHeapSize;
// To avoid pathological GC churn in very small and very large heaps, we set
// the new allocation limit based on the current size of the heap, with a
// fixed minimum.
size_t maxHeapSize = max(minHeapSize(m_heapType, m_ramSize), proportionalHeapSize(currentHeapSize, m_ramSize));
m_bytesAllocatedLimit = maxHeapSize - currentHeapSize;
m_bytesAllocated = 0;
double lastGCEndTime = WTF::currentTime();
m_lastGCLength = lastGCEndTime - lastGCStartTime;
if (Options::recordGCPauseTimes())
HeapStatistics::recordGCPauseTime(lastGCStartTime, lastGCEndTime);
RELEASE_ASSERT(m_operationInProgress == Collection);
m_operationInProgress = NoOperation;
JAVASCRIPTCORE_GC_END();
if (Options::useZombieMode())
zombifyDeadObjects();
if (Options::objectsAreImmortal())
markDeadObjects();
if (Options::showObjectStatistics())
HeapStatistics::showObjectStatistics(this);
}
void Heap::markDeadObjects()
{
m_objectSpace.forEachDeadCell<MarkObject>();
}
void Heap::setActivityCallback(PassOwnPtr<GCActivityCallback> activityCallback)
{
m_activityCallback = activityCallback;
}
GCActivityCallback* Heap::activityCallback()
{
return m_activityCallback.get();
}
IncrementalSweeper* Heap::sweeper()
{
return m_sweeper.get();
}
void Heap::setGarbageCollectionTimerEnabled(bool enable)
{
activityCallback()->setEnabled(enable);
}
void Heap::didAllocate(size_t bytes)
{
m_activityCallback->didAllocate(m_bytesAllocated + m_bytesAbandoned);
m_bytesAllocated += bytes;
}
bool Heap::isValidAllocation(size_t)
{
if (!isValidThreadState(m_vm))
return false;
if (m_operationInProgress != NoOperation)
return false;
return true;
}
void Heap::addFinalizer(JSCell* cell, Finalizer finalizer)
{
WeakSet::allocate(cell, &m_finalizerOwner, reinterpret_cast<void*>(finalizer)); // Balanced by FinalizerOwner::finalize().
}
void Heap::FinalizerOwner::finalize(Handle<Unknown> handle, void* context)
{
HandleSlot slot = handle.slot();
Finalizer finalizer = reinterpret_cast<Finalizer>(context);
finalizer(slot->asCell());
WeakSet::deallocate(WeakImpl::asWeakImpl(slot));
}
void Heap::addCompiledCode(ExecutableBase* executable)
{
m_compiledCode.append(executable);
}
class Zombify : public MarkedBlock::VoidFunctor {
public:
void operator()(JSCell* cell)
{
void** current = reinterpret_cast<void**>(cell);
// We want to maintain zapped-ness because that's how we know if we've called
// the destructor.
if (cell->isZapped())
current++;
void* limit = static_cast<void*>(reinterpret_cast<char*>(cell) + MarkedBlock::blockFor(cell)->cellSize());
for (; current < limit; current++)
*current = reinterpret_cast<void*>(0xbbadbeef);
}
};
void Heap::zombifyDeadObjects()
{
// Sweep now because destructors will crash once we're zombified.
m_objectSpace.sweep();
m_objectSpace.forEachDeadCell<Zombify>();
}
} // namespace JSC
|