1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 721 722 723 724 725 726 727 728 729 730 731 732 733 734 735 736 737 738 739 740 741 742 743 744 745 746 747 748 749 750 751 752 753 754 755 756 757 758 759 760 761 762 763 764 765 766 767 768 769 770 771 772 773 774 775 776 777 778 779 780 781 782 783 784 785 786 787 788 789 790 791 792 793 794 795 796 797 798 799 800 801 802 803 804 805 806 807 808 809 810 811 812 813 814 815 816 817 818 819 820 821 822 823 824 825 826 827 828 829 830 831 832 833 834 835 836 837 838 839 840 841 842 843 844 845 846 847 848 849 850 851 852 853 854 855 856 857 858 859 860 861 862 863 864 865 866 867 868 869 870 871 872 873 874 875 876 877 878 879 880 881 882 883 884 885 886 887 888 889 890 891 892 893 894 895 896 897 898 899 900 901 902 903 904 905 906 907 908 909 910 911 912 913 914 915 916 917 918 919 920 921 922 923 924 925 926 927 928 929 930 931 932 933 934 935 936 937 938 939 940 941 942 943 944 945 946 947 948 949 950 951 952 953 954 955 956 957 958 959 960 961 962 963 964 965 966 967 968 969 970 971 972 973 974 975 976 977 978 979 980 981 982 983 984 985 986 987 988 989 990 991 992 993 994 995 996 997 998 999 1000 1001 1002 1003 1004 1005 1006 1007 1008 1009 1010 1011 1012 1013 1014 1015 1016 1017 1018 1019 1020 1021 1022 1023 1024 1025 1026 1027 1028 1029 1030 1031 1032 1033 1034 1035 1036 1037 1038 1039 1040 1041 1042 1043 1044 1045 1046 1047 1048 1049 1050 1051 1052 1053 1054 1055 1056 1057 1058 1059 1060 1061 1062 1063 1064 1065 1066 1067 1068 1069 1070 1071 1072 1073 1074 1075 1076 1077 1078 1079 1080 1081 1082 1083 1084 1085 1086 1087 1088 1089 1090 1091 1092 1093 1094 1095 1096 1097 1098 1099 1100 1101 1102 1103 1104 1105 1106 1107 1108 1109 1110 1111 1112 1113 1114 1115 1116 1117 1118 1119 1120 1121 1122 1123 1124 1125 1126 1127 1128 1129 1130 1131 1132 1133 1134 1135 1136 1137 1138 1139 1140 1141 1142 1143 1144 1145 1146 1147 1148 1149 1150 1151 1152 1153 1154 1155 1156 1157 1158 1159 1160 1161 1162 1163 1164 1165 1166 1167 1168 1169 1170 1171 1172 1173 1174 1175 1176 1177 1178 1179 1180 1181 1182 1183 1184 1185 1186 1187 1188 1189 1190 1191 1192 1193 1194 1195 1196 1197 1198 1199 1200 1201 1202 1203 1204 1205 1206 1207 1208 1209 1210 1211 1212 1213 1214 1215 1216 1217 1218 1219 1220 1221 1222 1223 1224 1225 1226 1227 1228 1229 1230 1231 1232 1233 1234 1235 1236 1237 1238 1239 1240 1241 1242 1243 1244 1245 1246 1247 1248 1249 1250 1251 1252 1253 1254 1255 1256 1257 1258 1259 1260 1261 1262 1263 1264 1265 1266 1267 1268 1269 1270 1271 1272 1273 1274 1275 1276 1277 1278 1279 1280 1281 1282 1283 1284 1285 1286 1287 1288 1289 1290 1291 1292 1293 1294 1295 1296 1297 1298 1299 1300 1301 1302 1303 1304 1305 1306 1307 1308 1309 1310 1311 1312 1313 1314 1315 1316 1317 1318 1319 1320 1321 1322 1323 1324 1325 1326 1327 1328 1329 1330 1331 1332 1333 1334 1335 1336 1337 1338 1339 1340 1341 1342 1343 1344 1345 1346 1347 1348 1349 1350 1351 1352 1353 1354 1355 1356 1357 1358 1359 1360 1361 1362 1363 1364 1365 1366 1367 1368 1369 1370 1371 1372 1373 1374 1375 1376 1377 1378 1379 1380 1381 1382 1383 1384 1385 1386 1387 1388 1389 1390 1391 1392 1393 1394 1395 1396 1397 1398 1399 1400 1401 1402 1403 1404 1405 1406 1407 1408 1409 1410 1411 1412 1413 1414 1415 1416 1417 1418 1419 1420 1421 1422 1423 1424 1425 1426 1427 1428 1429 1430 1431 1432 1433 1434 1435 1436 1437 1438 1439 1440 1441 1442 1443 1444 1445 1446 1447 1448 1449 1450 1451 1452 1453 1454 1455 1456 1457 1458 1459 1460 1461 1462 1463 1464 1465 1466 1467 1468 1469 1470 1471 1472 1473 1474 1475 1476 1477 1478 1479 1480 1481 1482 1483 1484 1485 1486 1487 1488 1489 1490 1491 1492 1493 1494 1495 1496 1497 1498 1499 1500 1501 1502 1503 1504 1505 1506 1507 1508 1509 1510 1511 1512 1513 1514 1515 1516 1517 1518 1519 1520 1521 1522 1523 1524 1525 1526 1527 1528 1529 1530 1531 1532 1533 1534 1535 1536 1537 1538 1539 1540 1541 1542 1543 1544 1545 1546 1547 1548 1549 1550 1551 1552 1553 1554 1555 1556 1557 1558 1559 1560 1561 1562 1563 1564 1565 1566 1567 1568 1569 1570 1571 1572 1573 1574 1575 1576 1577 1578 1579 1580 1581 1582 1583 1584 1585 1586 1587 1588 1589 1590 1591 1592 1593 1594 1595 1596 1597 1598 1599 1600 1601 1602 1603 1604 1605 1606 1607 1608 1609 1610 1611 1612 1613 1614 1615 1616 1617 1618 1619 1620 1621 1622 1623 1624 1625 1626 1627 1628 1629 1630 1631 1632 1633 1634 1635 1636 1637 1638 1639 1640 1641 1642 1643 1644 1645 1646 1647 1648 1649 1650 1651 1652 1653 1654 1655 1656 1657 1658 1659 1660 1661 1662 1663 1664 1665 1666 1667 1668 1669 1670 1671 1672 1673 1674 1675 1676 1677 1678 1679 1680 1681 1682 1683 1684
|
/*
* Copyright (C) 1999-2000 Harri Porten (porten@kde.org)
* Copyright (C) 2003, 2007, 2008, 2009, 2012 Apple Inc. All rights reserved.
* Copyright (C) 2003 Peter Kelly (pmk@post.com)
* Copyright (C) 2006 Alexey Proskuryakov (ap@nypop.com)
*
* This library is free software; you can redistribute it and/or
* modify it under the terms of the GNU Lesser General Public
* License as published by the Free Software Foundation; either
* version 2 of the License, or (at your option) any later version.
*
* This library is distributed in the hope that it will be useful,
* but WITHOUT ANY WARRANTY; without even the implied warranty of
* MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU
* Lesser General Public License for more details.
*
* You should have received a copy of the GNU Lesser General Public
* License along with this library; if not, write to the Free Software
* Foundation, Inc., 51 Franklin Street, Fifth Floor, Boston, MA 02110-1301 USA
*
*/
#include "config.h"
#include "JSArray.h"
#include "ArrayPrototype.h"
#include "ButterflyInlines.h"
#include "CachedCall.h"
#include "CopiedSpace.h"
#include "CopiedSpaceInlines.h"
#include "Error.h"
#include "Executable.h"
#include "GetterSetter.h"
#include "IndexingHeaderInlines.h"
#include "PropertyNameArray.h"
#include "Reject.h"
#include <wtf/AVLTree.h>
#include <wtf/Assertions.h>
#include <wtf/OwnPtr.h>
#include <Operations.h>
using namespace std;
using namespace WTF;
namespace JSC {
ASSERT_HAS_TRIVIAL_DESTRUCTOR(JSArray);
const ClassInfo JSArray::s_info = {"Array", &JSNonFinalObject::s_info, 0, 0, CREATE_METHOD_TABLE(JSArray)};
Butterfly* createArrayButterflyInDictionaryIndexingMode(VM& vm, unsigned initialLength)
{
Butterfly* butterfly = Butterfly::create(
vm, 0, 0, true, IndexingHeader(), ArrayStorage::sizeFor(0));
ArrayStorage* storage = butterfly->arrayStorage();
storage->setLength(initialLength);
storage->setVectorLength(0);
storage->m_indexBias = 0;
storage->m_sparseMap.clear();
storage->m_numValuesInVector = 0;
return butterfly;
}
void JSArray::setLengthWritable(ExecState* exec, bool writable)
{
ASSERT(isLengthWritable() || !writable);
if (!isLengthWritable() || writable)
return;
enterDictionaryIndexingMode(exec->vm());
SparseArrayValueMap* map = arrayStorage()->m_sparseMap.get();
ASSERT(map);
map->setLengthIsReadOnly();
}
// Defined in ES5.1 15.4.5.1
bool JSArray::defineOwnProperty(JSObject* object, ExecState* exec, PropertyName propertyName, PropertyDescriptor& descriptor, bool throwException)
{
JSArray* array = jsCast<JSArray*>(object);
// 3. If P is "length", then
if (propertyName == exec->propertyNames().length) {
// All paths through length definition call the default [[DefineOwnProperty]], hence:
// from ES5.1 8.12.9 7.a.
if (descriptor.configurablePresent() && descriptor.configurable())
return reject(exec, throwException, "Attempting to change configurable attribute of unconfigurable property.");
// from ES5.1 8.12.9 7.b.
if (descriptor.enumerablePresent() && descriptor.enumerable())
return reject(exec, throwException, "Attempting to change enumerable attribute of unconfigurable property.");
// a. If the [[Value]] field of Desc is absent, then
// a.i. Return the result of calling the default [[DefineOwnProperty]] internal method (8.12.9) on A passing "length", Desc, and Throw as arguments.
if (descriptor.isAccessorDescriptor())
return reject(exec, throwException, "Attempting to change access mechanism for an unconfigurable property.");
// from ES5.1 8.12.9 10.a.
if (!array->isLengthWritable() && descriptor.writablePresent() && descriptor.writable())
return reject(exec, throwException, "Attempting to change writable attribute of unconfigurable property.");
// This descriptor is either just making length read-only, or changing nothing!
if (!descriptor.value()) {
if (descriptor.writablePresent())
array->setLengthWritable(exec, descriptor.writable());
return true;
}
// b. Let newLenDesc be a copy of Desc.
// c. Let newLen be ToUint32(Desc.[[Value]]).
unsigned newLen = descriptor.value().toUInt32(exec);
// d. If newLen is not equal to ToNumber( Desc.[[Value]]), throw a RangeError exception.
if (newLen != descriptor.value().toNumber(exec)) {
throwError(exec, createRangeError(exec, "Invalid array length"));
return false;
}
// Based on SameValue check in 8.12.9, this is always okay.
if (newLen == array->length()) {
if (descriptor.writablePresent())
array->setLengthWritable(exec, descriptor.writable());
return true;
}
// e. Set newLenDesc.[[Value] to newLen.
// f. If newLen >= oldLen, then
// f.i. Return the result of calling the default [[DefineOwnProperty]] internal method (8.12.9) on A passing "length", newLenDesc, and Throw as arguments.
// g. Reject if oldLenDesc.[[Writable]] is false.
if (!array->isLengthWritable())
return reject(exec, throwException, "Attempting to change value of a readonly property.");
// h. If newLenDesc.[[Writable]] is absent or has the value true, let newWritable be true.
// i. Else,
// i.i. Need to defer setting the [[Writable]] attribute to false in case any elements cannot be deleted.
// i.ii. Let newWritable be false.
// i.iii. Set newLenDesc.[[Writable] to true.
// j. Let succeeded be the result of calling the default [[DefineOwnProperty]] internal method (8.12.9) on A passing "length", newLenDesc, and Throw as arguments.
// k. If succeeded is false, return false.
// l. While newLen < oldLen repeat,
// l.i. Set oldLen to oldLen – 1.
// l.ii. Let deleteSucceeded be the result of calling the [[Delete]] internal method of A passing ToString(oldLen) and false as arguments.
// l.iii. If deleteSucceeded is false, then
if (!array->setLength(exec, newLen, throwException)) {
// 1. Set newLenDesc.[[Value] to oldLen+1.
// 2. If newWritable is false, set newLenDesc.[[Writable] to false.
// 3. Call the default [[DefineOwnProperty]] internal method (8.12.9) on A passing "length", newLenDesc, and false as arguments.
// 4. Reject.
if (descriptor.writablePresent())
array->setLengthWritable(exec, descriptor.writable());
return false;
}
// m. If newWritable is false, then
// i. Call the default [[DefineOwnProperty]] internal method (8.12.9) on A passing "length",
// Property Descriptor{[[Writable]]: false}, and false as arguments. This call will always
// return true.
if (descriptor.writablePresent())
array->setLengthWritable(exec, descriptor.writable());
// n. Return true.
return true;
}
// 4. Else if P is an array index (15.4), then
// a. Let index be ToUint32(P).
unsigned index = propertyName.asIndex();
if (index != PropertyName::NotAnIndex) {
// b. Reject if index >= oldLen and oldLenDesc.[[Writable]] is false.
if (index >= array->length() && !array->isLengthWritable())
return reject(exec, throwException, "Attempting to define numeric property on array with non-writable length property.");
// c. Let succeeded be the result of calling the default [[DefineOwnProperty]] internal method (8.12.9) on A passing P, Desc, and false as arguments.
// d. Reject if succeeded is false.
// e. If index >= oldLen
// e.i. Set oldLenDesc.[[Value]] to index + 1.
// e.ii. Call the default [[DefineOwnProperty]] internal method (8.12.9) on A passing "length", oldLenDesc, and false as arguments. This call will always return true.
// f. Return true.
return array->defineOwnIndexedProperty(exec, index, descriptor, throwException);
}
return array->JSObject::defineOwnNonIndexProperty(exec, propertyName, descriptor, throwException);
}
bool JSArray::getOwnPropertySlot(JSCell* cell, ExecState* exec, PropertyName propertyName, PropertySlot& slot)
{
JSArray* thisObject = jsCast<JSArray*>(cell);
if (propertyName == exec->propertyNames().length) {
slot.setValue(jsNumber(thisObject->length()));
return true;
}
return JSObject::getOwnPropertySlot(thisObject, exec, propertyName, slot);
}
bool JSArray::getOwnPropertyDescriptor(JSObject* object, ExecState* exec, PropertyName propertyName, PropertyDescriptor& descriptor)
{
JSArray* thisObject = jsCast<JSArray*>(object);
if (propertyName == exec->propertyNames().length) {
descriptor.setDescriptor(jsNumber(thisObject->length()), thisObject->isLengthWritable() ? DontDelete | DontEnum : DontDelete | DontEnum | ReadOnly);
return true;
}
return JSObject::getOwnPropertyDescriptor(thisObject, exec, propertyName, descriptor);
}
// ECMA 15.4.5.1
void JSArray::put(JSCell* cell, ExecState* exec, PropertyName propertyName, JSValue value, PutPropertySlot& slot)
{
JSArray* thisObject = jsCast<JSArray*>(cell);
if (propertyName == exec->propertyNames().length) {
unsigned newLength = value.toUInt32(exec);
if (value.toNumber(exec) != static_cast<double>(newLength)) {
throwError(exec, createRangeError(exec, ASCIILiteral("Invalid array length")));
return;
}
thisObject->setLength(exec, newLength, slot.isStrictMode());
return;
}
JSObject::put(thisObject, exec, propertyName, value, slot);
}
bool JSArray::deleteProperty(JSCell* cell, ExecState* exec, PropertyName propertyName)
{
JSArray* thisObject = jsCast<JSArray*>(cell);
if (propertyName == exec->propertyNames().length)
return false;
return JSObject::deleteProperty(thisObject, exec, propertyName);
}
static int compareKeysForQSort(const void* a, const void* b)
{
unsigned da = *static_cast<const unsigned*>(a);
unsigned db = *static_cast<const unsigned*>(b);
return (da > db) - (da < db);
}
void JSArray::getOwnNonIndexPropertyNames(JSObject* object, ExecState* exec, PropertyNameArray& propertyNames, EnumerationMode mode)
{
JSArray* thisObject = jsCast<JSArray*>(object);
if (mode == IncludeDontEnumProperties)
propertyNames.add(exec->propertyNames().length);
JSObject::getOwnNonIndexPropertyNames(thisObject, exec, propertyNames, mode);
}
// This method makes room in the vector, but leaves the new space for count slots uncleared.
bool JSArray::unshiftCountSlowCase(VM& vm, bool addToFront, unsigned count)
{
ArrayStorage* storage = ensureArrayStorage(vm);
Butterfly* butterfly = storage->butterfly();
unsigned propertyCapacity = structure()->outOfLineCapacity();
unsigned propertySize = structure()->outOfLineSize();
// If not, we should have handled this on the fast path.
ASSERT(!addToFront || count > storage->m_indexBias);
// Step 1:
// Gather 4 key metrics:
// * usedVectorLength - how many entries are currently in the vector (conservative estimate - fewer may be in use in sparse vectors).
// * requiredVectorLength - how many entries are will there be in the vector, after allocating space for 'count' more.
// * currentCapacity - what is the current size of the vector, including any pre-capacity.
// * desiredCapacity - how large should we like to grow the vector to - based on 2x requiredVectorLength.
unsigned length = storage->length();
unsigned usedVectorLength = min(storage->vectorLength(), length);
ASSERT(usedVectorLength <= MAX_STORAGE_VECTOR_LENGTH);
// Check that required vector length is possible, in an overflow-safe fashion.
if (count > MAX_STORAGE_VECTOR_LENGTH - usedVectorLength)
return false;
unsigned requiredVectorLength = usedVectorLength + count;
ASSERT(requiredVectorLength <= MAX_STORAGE_VECTOR_LENGTH);
// The sum of m_vectorLength and m_indexBias will never exceed MAX_STORAGE_VECTOR_LENGTH.
ASSERT(storage->vectorLength() <= MAX_STORAGE_VECTOR_LENGTH && (MAX_STORAGE_VECTOR_LENGTH - storage->vectorLength()) >= storage->m_indexBias);
unsigned currentCapacity = storage->vectorLength() + storage->m_indexBias;
// The calculation of desiredCapacity won't overflow, due to the range of MAX_STORAGE_VECTOR_LENGTH.
unsigned desiredCapacity = min(MAX_STORAGE_VECTOR_LENGTH, max(BASE_VECTOR_LEN, requiredVectorLength) << 1);
// Step 2:
// We're either going to choose to allocate a new ArrayStorage, or we're going to reuse the existing one.
void* newAllocBase = 0;
unsigned newStorageCapacity;
// If the current storage array is sufficiently large (but not too large!) then just keep using it.
if (currentCapacity > desiredCapacity && isDenseEnoughForVector(currentCapacity, requiredVectorLength)) {
newAllocBase = butterfly->base(structure());
newStorageCapacity = currentCapacity;
} else {
size_t newSize = Butterfly::totalSize(0, propertyCapacity, true, ArrayStorage::sizeFor(desiredCapacity));
if (!vm.heap.tryAllocateStorage(newSize, &newAllocBase))
return false;
newStorageCapacity = desiredCapacity;
}
// Step 3:
// Work out where we're going to move things to.
// Determine how much of the vector to use as pre-capacity, and how much as post-capacity.
// If we're adding to the end, we'll add all the new space to the end.
// If the vector had no free post-capacity (length >= m_vectorLength), don't give it any.
// If it did, we calculate the amount that will remain based on an atomic decay - leave the
// vector with half the post-capacity it had previously.
unsigned postCapacity = 0;
if (!addToFront)
postCapacity = max(newStorageCapacity - requiredVectorLength, count);
else if (length < storage->vectorLength()) {
// Atomic decay, + the post-capacity cannot be greater than what is available.
postCapacity = min((storage->vectorLength() - length) >> 1, newStorageCapacity - requiredVectorLength);
// If we're moving contents within the same allocation, the post-capacity is being reduced.
ASSERT(newAllocBase != butterfly->base(structure()) || postCapacity < storage->vectorLength() - length);
}
unsigned newVectorLength = requiredVectorLength + postCapacity;
unsigned newIndexBias = newStorageCapacity - newVectorLength;
Butterfly* newButterfly = Butterfly::fromBase(newAllocBase, newIndexBias, propertyCapacity);
if (addToFront) {
ASSERT(count + usedVectorLength <= newVectorLength);
memmove(newButterfly->arrayStorage()->m_vector + count, storage->m_vector, sizeof(JSValue) * usedVectorLength);
memmove(newButterfly->propertyStorage() - propertySize, butterfly->propertyStorage() - propertySize, sizeof(JSValue) * propertySize + sizeof(IndexingHeader) + ArrayStorage::sizeFor(0));
} else if ((newAllocBase != butterfly->base(structure())) || (newIndexBias != storage->m_indexBias)) {
memmove(newButterfly->propertyStorage() - propertySize, butterfly->propertyStorage() - propertySize, sizeof(JSValue) * propertySize + sizeof(IndexingHeader) + ArrayStorage::sizeFor(0));
memmove(newButterfly->arrayStorage()->m_vector, storage->m_vector, sizeof(JSValue) * usedVectorLength);
WriteBarrier<Unknown>* newVector = newButterfly->arrayStorage()->m_vector;
for (unsigned i = requiredVectorLength; i < newVectorLength; i++)
newVector[i].clear();
}
newButterfly->arrayStorage()->setVectorLength(newVectorLength);
newButterfly->arrayStorage()->m_indexBias = newIndexBias;
m_butterfly = newButterfly;
return true;
}
bool JSArray::setLengthWithArrayStorage(ExecState* exec, unsigned newLength, bool throwException, ArrayStorage* storage)
{
unsigned length = storage->length();
// If the length is read only then we enter sparse mode, so should enter the following 'if'.
ASSERT(isLengthWritable() || storage->m_sparseMap);
if (SparseArrayValueMap* map = storage->m_sparseMap.get()) {
// Fail if the length is not writable.
if (map->lengthIsReadOnly())
return reject(exec, throwException, StrictModeReadonlyPropertyWriteError);
if (newLength < length) {
// Copy any keys we might be interested in into a vector.
Vector<unsigned, 0, UnsafeVectorOverflow> keys;
keys.reserveInitialCapacity(min(map->size(), static_cast<size_t>(length - newLength)));
SparseArrayValueMap::const_iterator end = map->end();
for (SparseArrayValueMap::const_iterator it = map->begin(); it != end; ++it) {
unsigned index = static_cast<unsigned>(it->key);
if (index < length && index >= newLength)
keys.append(index);
}
// Check if the array is in sparse mode. If so there may be non-configurable
// properties, so we have to perform deletion with caution, if not we can
// delete values in any order.
if (map->sparseMode()) {
qsort(keys.begin(), keys.size(), sizeof(unsigned), compareKeysForQSort);
unsigned i = keys.size();
while (i) {
unsigned index = keys[--i];
SparseArrayValueMap::iterator it = map->find(index);
ASSERT(it != map->notFound());
if (it->value.attributes & DontDelete) {
storage->setLength(index + 1);
return reject(exec, throwException, "Unable to delete property.");
}
map->remove(it);
}
} else {
for (unsigned i = 0; i < keys.size(); ++i)
map->remove(keys[i]);
if (map->isEmpty())
deallocateSparseIndexMap();
}
}
}
if (newLength < length) {
// Delete properties from the vector.
unsigned usedVectorLength = min(length, storage->vectorLength());
for (unsigned i = newLength; i < usedVectorLength; ++i) {
WriteBarrier<Unknown>& valueSlot = storage->m_vector[i];
bool hadValue = valueSlot;
valueSlot.clear();
storage->m_numValuesInVector -= hadValue;
}
}
storage->setLength(newLength);
return true;
}
bool JSArray::setLength(ExecState* exec, unsigned newLength, bool throwException)
{
switch (structure()->indexingType()) {
case ArrayClass:
if (!newLength)
return true;
if (newLength >= MIN_SPARSE_ARRAY_INDEX) {
return setLengthWithArrayStorage(
exec, newLength, throwException,
convertContiguousToArrayStorage(exec->vm()));
}
createInitialUndecided(exec->vm(), newLength);
return true;
case ArrayWithUndecided:
case ArrayWithInt32:
case ArrayWithDouble:
case ArrayWithContiguous:
if (newLength == m_butterfly->publicLength())
return true;
if (newLength >= MAX_ARRAY_INDEX // This case ensures that we can do fast push.
|| (newLength >= MIN_SPARSE_ARRAY_INDEX
&& !isDenseEnoughForVector(newLength, countElements()))) {
return setLengthWithArrayStorage(
exec, newLength, throwException,
ensureArrayStorage(exec->vm()));
}
if (newLength > m_butterfly->publicLength()) {
ensureLength(exec->vm(), newLength);
return true;
}
if (structure()->indexingType() == ArrayWithDouble) {
for (unsigned i = m_butterfly->publicLength(); i-- > newLength;)
m_butterfly->contiguousDouble()[i] = QNaN;
} else {
for (unsigned i = m_butterfly->publicLength(); i-- > newLength;)
m_butterfly->contiguous()[i].clear();
}
m_butterfly->setPublicLength(newLength);
return true;
case ArrayWithArrayStorage:
case ArrayWithSlowPutArrayStorage:
return setLengthWithArrayStorage(exec, newLength, throwException, arrayStorage());
default:
CRASH();
return false;
}
}
JSValue JSArray::pop(ExecState* exec)
{
switch (structure()->indexingType()) {
case ArrayClass:
return jsUndefined();
case ArrayWithUndecided:
if (!m_butterfly->publicLength())
return jsUndefined();
// We have nothing but holes. So, drop down to the slow version.
break;
case ArrayWithInt32:
case ArrayWithContiguous: {
unsigned length = m_butterfly->publicLength();
if (!length--)
return jsUndefined();
RELEASE_ASSERT(length < m_butterfly->vectorLength());
JSValue value = m_butterfly->contiguous()[length].get();
if (value) {
m_butterfly->contiguous()[length].clear();
m_butterfly->setPublicLength(length);
return value;
}
break;
}
case ArrayWithDouble: {
unsigned length = m_butterfly->publicLength();
if (!length--)
return jsUndefined();
RELEASE_ASSERT(length < m_butterfly->vectorLength());
double value = m_butterfly->contiguousDouble()[length];
if (value == value) {
m_butterfly->contiguousDouble()[length] = QNaN;
m_butterfly->setPublicLength(length);
return JSValue(JSValue::EncodeAsDouble, value);
}
break;
}
case ARRAY_WITH_ARRAY_STORAGE_INDEXING_TYPES: {
ArrayStorage* storage = m_butterfly->arrayStorage();
unsigned length = storage->length();
if (!length) {
if (!isLengthWritable())
throwTypeError(exec, StrictModeReadonlyPropertyWriteError);
return jsUndefined();
}
unsigned index = length - 1;
if (index < storage->vectorLength()) {
WriteBarrier<Unknown>& valueSlot = storage->m_vector[index];
if (valueSlot) {
--storage->m_numValuesInVector;
JSValue element = valueSlot.get();
valueSlot.clear();
RELEASE_ASSERT(isLengthWritable());
storage->setLength(index);
return element;
}
}
break;
}
default:
CRASH();
return JSValue();
}
unsigned index = getArrayLength() - 1;
// Let element be the result of calling the [[Get]] internal method of O with argument indx.
JSValue element = get(exec, index);
if (exec->hadException())
return jsUndefined();
// Call the [[Delete]] internal method of O with arguments indx and true.
if (!deletePropertyByIndex(this, exec, index)) {
throwTypeError(exec, "Unable to delete property.");
return jsUndefined();
}
// Call the [[Put]] internal method of O with arguments "length", indx, and true.
setLength(exec, index, true);
// Return element.
return element;
}
// Push & putIndex are almost identical, with two small differences.
// - we always are writing beyond the current array bounds, so it is always necessary to update m_length & m_numValuesInVector.
// - pushing to an array of length 2^32-1 stores the property, but throws a range error.
void JSArray::push(ExecState* exec, JSValue value)
{
switch (structure()->indexingType()) {
case ArrayClass: {
createInitialUndecided(exec->vm(), 0);
// Fall through.
}
case ArrayWithUndecided: {
convertUndecidedForValue(exec->vm(), value);
push(exec, value);
return;
}
case ArrayWithInt32: {
if (!value.isInt32()) {
convertInt32ForValue(exec->vm(), value);
push(exec, value);
return;
}
unsigned length = m_butterfly->publicLength();
ASSERT(length <= m_butterfly->vectorLength());
if (length < m_butterfly->vectorLength()) {
m_butterfly->contiguousInt32()[length].setWithoutWriteBarrier(value);
m_butterfly->setPublicLength(length + 1);
return;
}
if (length > MAX_ARRAY_INDEX) {
methodTable()->putByIndex(this, exec, length, value, true);
if (!exec->hadException())
throwError(exec, createRangeError(exec, "Invalid array length"));
return;
}
putByIndexBeyondVectorLengthWithoutAttributes<Int32Shape>(exec, length, value);
return;
}
case ArrayWithContiguous: {
unsigned length = m_butterfly->publicLength();
ASSERT(length <= m_butterfly->vectorLength());
if (length < m_butterfly->vectorLength()) {
m_butterfly->contiguous()[length].set(exec->vm(), this, value);
m_butterfly->setPublicLength(length + 1);
return;
}
if (length > MAX_ARRAY_INDEX) {
methodTable()->putByIndex(this, exec, length, value, true);
if (!exec->hadException())
throwError(exec, createRangeError(exec, "Invalid array length"));
return;
}
putByIndexBeyondVectorLengthWithoutAttributes<ContiguousShape>(exec, length, value);
return;
}
case ArrayWithDouble: {
if (!value.isNumber()) {
convertDoubleToContiguous(exec->vm());
push(exec, value);
return;
}
double valueAsDouble = value.asNumber();
if (valueAsDouble != valueAsDouble) {
convertDoubleToContiguous(exec->vm());
push(exec, value);
return;
}
unsigned length = m_butterfly->publicLength();
ASSERT(length <= m_butterfly->vectorLength());
if (length < m_butterfly->vectorLength()) {
m_butterfly->contiguousDouble()[length] = valueAsDouble;
m_butterfly->setPublicLength(length + 1);
return;
}
if (length > MAX_ARRAY_INDEX) {
methodTable()->putByIndex(this, exec, length, value, true);
if (!exec->hadException())
throwError(exec, createRangeError(exec, "Invalid array length"));
return;
}
putByIndexBeyondVectorLengthWithoutAttributes<DoubleShape>(exec, length, value);
break;
}
case ArrayWithSlowPutArrayStorage: {
unsigned oldLength = length();
if (attemptToInterceptPutByIndexOnHole(exec, oldLength, value, true)) {
if (!exec->hadException() && oldLength < 0xFFFFFFFFu)
setLength(exec, oldLength + 1, true);
return;
}
// Fall through.
}
case ArrayWithArrayStorage: {
ArrayStorage* storage = m_butterfly->arrayStorage();
// Fast case - push within vector, always update m_length & m_numValuesInVector.
unsigned length = storage->length();
if (length < storage->vectorLength()) {
storage->m_vector[length].set(exec->vm(), this, value);
storage->setLength(length + 1);
++storage->m_numValuesInVector;
return;
}
// Pushing to an array of invalid length (2^31-1) stores the property, but throws a range error.
if (storage->length() > MAX_ARRAY_INDEX) {
methodTable()->putByIndex(this, exec, storage->length(), value, true);
// Per ES5.1 15.4.4.7 step 6 & 15.4.5.1 step 3.d.
if (!exec->hadException())
throwError(exec, createRangeError(exec, "Invalid array length"));
return;
}
// Handled the same as putIndex.
putByIndexBeyondVectorLengthWithArrayStorage(exec, storage->length(), value, true, storage);
break;
}
default:
RELEASE_ASSERT_NOT_REACHED();
}
}
bool JSArray::shiftCountWithArrayStorage(unsigned startIndex, unsigned count, ArrayStorage* storage)
{
unsigned oldLength = storage->length();
RELEASE_ASSERT(count <= oldLength);
// If the array contains holes or is otherwise in an abnormal state,
// use the generic algorithm in ArrayPrototype.
if (oldLength != storage->m_numValuesInVector || inSparseIndexingMode() || shouldUseSlowPut(structure()->indexingType()))
return false;
if (!oldLength)
return true;
unsigned length = oldLength - count;
storage->m_numValuesInVector -= count;
storage->setLength(length);
unsigned vectorLength = storage->vectorLength();
if (!vectorLength)
return true;
if (startIndex >= vectorLength)
return true;
if (startIndex + count > vectorLength)
count = vectorLength - startIndex;
unsigned usedVectorLength = min(vectorLength, oldLength);
vectorLength -= count;
storage->setVectorLength(vectorLength);
if (vectorLength) {
if (startIndex < usedVectorLength - (startIndex + count)) {
if (startIndex) {
memmove(
storage->m_vector + count,
storage->m_vector,
sizeof(JSValue) * startIndex);
}
m_butterfly = m_butterfly->shift(structure(), count);
storage = m_butterfly->arrayStorage();
storage->m_indexBias += count;
} else {
memmove(
storage->m_vector + startIndex,
storage->m_vector + startIndex + count,
sizeof(JSValue) * (usedVectorLength - (startIndex + count)));
for (unsigned i = usedVectorLength - count; i < usedVectorLength; ++i)
storage->m_vector[i].clear();
}
}
return true;
}
bool JSArray::shiftCountWithAnyIndexingType(ExecState* exec, unsigned startIndex, unsigned count)
{
RELEASE_ASSERT(count > 0);
switch (structure()->indexingType()) {
case ArrayClass:
return true;
case ArrayWithUndecided:
// Don't handle this because it's confusing and it shouldn't come up.
return false;
case ArrayWithInt32:
case ArrayWithContiguous: {
unsigned oldLength = m_butterfly->publicLength();
RELEASE_ASSERT(count <= oldLength);
// We may have to walk the entire array to do the shift. We're willing to do
// so only if it's not horribly slow.
if (oldLength - (startIndex + count) >= MIN_SPARSE_ARRAY_INDEX)
return shiftCountWithArrayStorage(startIndex, count, ensureArrayStorage(exec->vm()));
// Storing to a hole is fine since we're still having a good time. But reading from a hole
// is totally not fine, since we might have to read from the proto chain.
// We have to check for holes before we start moving things around so that we don't get halfway
// through shifting and then realize we should have been in ArrayStorage mode.
unsigned end = oldLength - count;
for (unsigned i = startIndex; i < end; ++i) {
JSValue v = m_butterfly->contiguous()[i + count].get();
if (UNLIKELY(!v))
return shiftCountWithArrayStorage(startIndex, count, ensureArrayStorage(exec->vm()));
}
for (unsigned i = startIndex; i < end; ++i) {
JSValue v = m_butterfly->contiguous()[i + count].get();
ASSERT(v);
// No need for a barrier since we're just moving data around in the same vector.
// This is in line with our standing assumption that we won't have a deletion
// barrier.
m_butterfly->contiguous()[i].setWithoutWriteBarrier(v);
}
for (unsigned i = end; i < oldLength; ++i)
m_butterfly->contiguous()[i].clear();
m_butterfly->setPublicLength(oldLength - count);
return true;
}
case ArrayWithDouble: {
unsigned oldLength = m_butterfly->publicLength();
RELEASE_ASSERT(count <= oldLength);
// We may have to walk the entire array to do the shift. We're willing to do
// so only if it's not horribly slow.
if (oldLength - (startIndex + count) >= MIN_SPARSE_ARRAY_INDEX)
return shiftCountWithArrayStorage(startIndex, count, ensureArrayStorage(exec->vm()));
// Storing to a hole is fine since we're still having a good time. But reading from a hole
// is totally not fine, since we might have to read from the proto chain.
// We have to check for holes before we start moving things around so that we don't get halfway
// through shifting and then realize we should have been in ArrayStorage mode.
unsigned end = oldLength - count;
for (unsigned i = startIndex; i < end; ++i) {
double v = m_butterfly->contiguousDouble()[i + count];
if (UNLIKELY(v != v))
return shiftCountWithArrayStorage(startIndex, count, ensureArrayStorage(exec->vm()));
}
for (unsigned i = startIndex; i < end; ++i) {
double v = m_butterfly->contiguousDouble()[i + count];
ASSERT(v == v);
// No need for a barrier since we're just moving data around in the same vector.
// This is in line with our standing assumption that we won't have a deletion
// barrier.
m_butterfly->contiguousDouble()[i] = v;
}
for (unsigned i = end; i < oldLength; ++i)
m_butterfly->contiguousDouble()[i] = QNaN;
m_butterfly->setPublicLength(oldLength - count);
return true;
}
case ArrayWithArrayStorage:
case ArrayWithSlowPutArrayStorage:
return shiftCountWithArrayStorage(startIndex, count, arrayStorage());
default:
CRASH();
return false;
}
}
// Returns true if the unshift can be handled, false to fallback.
bool JSArray::unshiftCountWithArrayStorage(ExecState* exec, unsigned startIndex, unsigned count, ArrayStorage* storage)
{
unsigned length = storage->length();
RELEASE_ASSERT(startIndex <= length);
// If the array contains holes or is otherwise in an abnormal state,
// use the generic algorithm in ArrayPrototype.
if (length != storage->m_numValuesInVector || storage->inSparseMode() || shouldUseSlowPut(structure()->indexingType()))
return false;
bool moveFront = !startIndex || startIndex < length / 2;
unsigned vectorLength = storage->vectorLength();
if (moveFront && storage->m_indexBias >= count) {
m_butterfly = storage->butterfly()->unshift(structure(), count);
storage = m_butterfly->arrayStorage();
storage->m_indexBias -= count;
storage->setVectorLength(vectorLength + count);
} else if (!moveFront && vectorLength - length >= count)
storage = storage->butterfly()->arrayStorage();
else if (unshiftCountSlowCase(exec->vm(), moveFront, count))
storage = arrayStorage();
else {
throwOutOfMemoryError(exec);
return true;
}
WriteBarrier<Unknown>* vector = storage->m_vector;
if (startIndex) {
if (moveFront)
memmove(vector, vector + count, startIndex * sizeof(JSValue));
else if (length - startIndex)
memmove(vector + startIndex + count, vector + startIndex, (length - startIndex) * sizeof(JSValue));
}
for (unsigned i = 0; i < count; i++)
vector[i + startIndex].clear();
return true;
}
bool JSArray::unshiftCountWithAnyIndexingType(ExecState* exec, unsigned startIndex, unsigned count)
{
switch (structure()->indexingType()) {
case ArrayClass:
case ArrayWithUndecided:
// We could handle this. But it shouldn't ever come up, so we won't.
return false;
case ArrayWithInt32:
case ArrayWithContiguous: {
unsigned oldLength = m_butterfly->publicLength();
// We may have to walk the entire array to do the unshift. We're willing to do so
// only if it's not horribly slow.
if (oldLength - startIndex >= MIN_SPARSE_ARRAY_INDEX)
return unshiftCountWithArrayStorage(exec, startIndex, count, ensureArrayStorage(exec->vm()));
ensureLength(exec->vm(), oldLength + count);
// We have to check for holes before we start moving things around so that we don't get halfway
// through shifting and then realize we should have been in ArrayStorage mode.
for (unsigned i = oldLength; i-- > startIndex;) {
JSValue v = m_butterfly->contiguous()[i].get();
if (UNLIKELY(!v))
return unshiftCountWithArrayStorage(exec, startIndex, count, ensureArrayStorage(exec->vm()));
}
for (unsigned i = oldLength; i-- > startIndex;) {
JSValue v = m_butterfly->contiguous()[i].get();
ASSERT(v);
m_butterfly->contiguous()[i + count].setWithoutWriteBarrier(v);
}
// NOTE: we're leaving being garbage in the part of the array that we shifted out
// of. This is fine because the caller is required to store over that area, and
// in contiguous mode storing into a hole is guaranteed to behave exactly the same
// as storing over an existing element.
return true;
}
case ArrayWithDouble: {
unsigned oldLength = m_butterfly->publicLength();
// We may have to walk the entire array to do the unshift. We're willing to do so
// only if it's not horribly slow.
if (oldLength - startIndex >= MIN_SPARSE_ARRAY_INDEX)
return unshiftCountWithArrayStorage(exec, startIndex, count, ensureArrayStorage(exec->vm()));
ensureLength(exec->vm(), oldLength + count);
// We have to check for holes before we start moving things around so that we don't get halfway
// through shifting and then realize we should have been in ArrayStorage mode.
for (unsigned i = oldLength; i-- > startIndex;) {
double v = m_butterfly->contiguousDouble()[i];
if (UNLIKELY(v != v))
return unshiftCountWithArrayStorage(exec, startIndex, count, ensureArrayStorage(exec->vm()));
}
for (unsigned i = oldLength; i-- > startIndex;) {
double v = m_butterfly->contiguousDouble()[i];
ASSERT(v == v);
m_butterfly->contiguousDouble()[i + count] = v;
}
// NOTE: we're leaving being garbage in the part of the array that we shifted out
// of. This is fine because the caller is required to store over that area, and
// in contiguous mode storing into a hole is guaranteed to behave exactly the same
// as storing over an existing element.
return true;
}
case ArrayWithArrayStorage:
case ArrayWithSlowPutArrayStorage:
return unshiftCountWithArrayStorage(exec, startIndex, count, arrayStorage());
default:
CRASH();
return false;
}
}
static int compareNumbersForQSortWithInt32(const void* a, const void* b)
{
int32_t ia = static_cast<const JSValue*>(a)->asInt32();
int32_t ib = static_cast<const JSValue*>(b)->asInt32();
return ia - ib;
}
static int compareNumbersForQSortWithDouble(const void* a, const void* b)
{
double da = *static_cast<const double*>(a);
double db = *static_cast<const double*>(b);
return (da > db) - (da < db);
}
static int compareNumbersForQSort(const void* a, const void* b)
{
double da = static_cast<const JSValue*>(a)->asNumber();
double db = static_cast<const JSValue*>(b)->asNumber();
return (da > db) - (da < db);
}
static int compareByStringPairForQSort(const void* a, const void* b)
{
const ValueStringPair* va = static_cast<const ValueStringPair*>(a);
const ValueStringPair* vb = static_cast<const ValueStringPair*>(b);
return codePointCompare(va->second, vb->second);
}
template<IndexingType indexingType>
void JSArray::sortNumericVector(ExecState* exec, JSValue compareFunction, CallType callType, const CallData& callData)
{
ASSERT(indexingType == ArrayWithInt32 || indexingType == ArrayWithDouble || indexingType == ArrayWithContiguous || indexingType == ArrayWithArrayStorage);
unsigned lengthNotIncludingUndefined;
unsigned newRelevantLength;
compactForSorting<indexingType>(
lengthNotIncludingUndefined,
newRelevantLength);
ContiguousJSValues data = indexingData<indexingType>();
if (indexingType == ArrayWithArrayStorage && arrayStorage()->m_sparseMap.get()) {
throwOutOfMemoryError(exec);
return;
}
if (!lengthNotIncludingUndefined)
return;
bool allValuesAreNumbers = true;
switch (indexingType) {
case ArrayWithInt32:
case ArrayWithDouble:
break;
default:
for (size_t i = 0; i < newRelevantLength; ++i) {
if (!data[i].isNumber()) {
allValuesAreNumbers = false;
break;
}
}
break;
}
if (!allValuesAreNumbers)
return sort(exec, compareFunction, callType, callData);
// For numeric comparison, which is fast, qsort is faster than mergesort. We
// also don't require mergesort's stability, since there's no user visible
// side-effect from swapping the order of equal primitive values.
int (*compare)(const void*, const void*);
switch (indexingType) {
case ArrayWithInt32:
compare = compareNumbersForQSortWithInt32;
break;
case ArrayWithDouble:
compare = compareNumbersForQSortWithDouble;
ASSERT(sizeof(WriteBarrier<Unknown>) == sizeof(double));
break;
default:
compare = compareNumbersForQSort;
break;
}
ASSERT(data.length() >= newRelevantLength);
qsort(data.data(), newRelevantLength, sizeof(WriteBarrier<Unknown>), compare);
return;
}
void JSArray::sortNumeric(ExecState* exec, JSValue compareFunction, CallType callType, const CallData& callData)
{
ASSERT(!inSparseIndexingMode());
switch (structure()->indexingType()) {
case ArrayClass:
return;
case ArrayWithInt32:
sortNumericVector<ArrayWithInt32>(exec, compareFunction, callType, callData);
break;
case ArrayWithDouble:
sortNumericVector<ArrayWithDouble>(exec, compareFunction, callType, callData);
break;
case ArrayWithContiguous:
sortNumericVector<ArrayWithContiguous>(exec, compareFunction, callType, callData);
return;
case ArrayWithArrayStorage:
sortNumericVector<ArrayWithArrayStorage>(exec, compareFunction, callType, callData);
return;
default:
CRASH();
return;
}
}
template <IndexingType> struct ContiguousTypeAccessor {
typedef WriteBarrier<Unknown> Type;
static JSValue getAsValue(ContiguousData<Type> data, size_t i) { return data[i].get(); }
static void setWithValue(VM& vm, JSArray* thisValue, ContiguousData<Type> data, size_t i, JSValue value)
{
data[i].set(vm, thisValue, value);
}
static void replaceDataReference(ContiguousData<Type>* outData, ContiguousJSValues inData)
{
*outData = inData;
}
};
template <> struct ContiguousTypeAccessor<ArrayWithDouble> {
typedef double Type;
static JSValue getAsValue(ContiguousData<Type> data, size_t i) { ASSERT(data[i] == data[i]); return JSValue(JSValue::EncodeAsDouble, data[i]); }
static void setWithValue(VM&, JSArray*, ContiguousData<Type> data, size_t i, JSValue value)
{
data[i] = value.asNumber();
}
static NO_RETURN_DUE_TO_CRASH void replaceDataReference(ContiguousData<Type>*, ContiguousJSValues)
{
RELEASE_ASSERT_WITH_MESSAGE(0, "Inconsistent indexing types during compact array sort.");
}
};
template<IndexingType indexingType, typename StorageType>
void JSArray::sortCompactedVector(ExecState* exec, ContiguousData<StorageType> data, unsigned relevantLength)
{
if (!relevantLength)
return;
VM& vm = exec->vm();
// Converting JavaScript values to strings can be expensive, so we do it once up front and sort based on that.
// This is a considerable improvement over doing it twice per comparison, though it requires a large temporary
// buffer. Besides, this protects us from crashing if some objects have custom toString methods that return
// random or otherwise changing results, effectively making compare function inconsistent.
Vector<ValueStringPair, 0, UnsafeVectorOverflow> values(relevantLength);
if (!values.begin()) {
throwOutOfMemoryError(exec);
return;
}
Heap::heap(this)->pushTempSortVector(&values);
bool isSortingPrimitiveValues = true;
for (size_t i = 0; i < relevantLength; i++) {
JSValue value = ContiguousTypeAccessor<indexingType>::getAsValue(data, i);
ASSERT(indexingType != ArrayWithInt32 || value.isInt32());
ASSERT(!value.isUndefined());
values[i].first = value;
if (indexingType != ArrayWithDouble && indexingType != ArrayWithInt32)
isSortingPrimitiveValues = isSortingPrimitiveValues && value.isPrimitive();
}
// FIXME: The following loop continues to call toString on subsequent values even after
// a toString call raises an exception.
for (size_t i = 0; i < relevantLength; i++)
values[i].second = values[i].first.toWTFStringInline(exec);
if (exec->hadException()) {
Heap::heap(this)->popTempSortVector(&values);
return;
}
// FIXME: Since we sort by string value, a fast algorithm might be to use a radix sort. That would be O(N) rather
// than O(N log N).
#if HAVE(MERGESORT)
if (isSortingPrimitiveValues)
qsort(values.begin(), values.size(), sizeof(ValueStringPair), compareByStringPairForQSort);
else
mergesort(values.begin(), values.size(), sizeof(ValueStringPair), compareByStringPairForQSort);
#else
// FIXME: The qsort library function is likely to not be a stable sort.
// ECMAScript-262 does not specify a stable sort, but in practice, browsers perform a stable sort.
qsort(values.begin(), values.size(), sizeof(ValueStringPair), compareByStringPairForQSort);
#endif
// If the toString function changed the length of the array or vector storage,
// increase the length to handle the orignal number of actual values.
switch (indexingType) {
case ArrayWithInt32:
case ArrayWithDouble:
case ArrayWithContiguous:
ensureLength(vm, relevantLength);
break;
case ArrayWithArrayStorage:
if (arrayStorage()->vectorLength() < relevantLength) {
increaseVectorLength(exec->vm(), relevantLength);
ContiguousTypeAccessor<indexingType>::replaceDataReference(&data, arrayStorage()->vector());
}
if (arrayStorage()->length() < relevantLength)
arrayStorage()->setLength(relevantLength);
break;
default:
CRASH();
}
for (size_t i = 0; i < relevantLength; i++)
ContiguousTypeAccessor<indexingType>::setWithValue(vm, this, data, i, values[i].first);
Heap::heap(this)->popTempSortVector(&values);
}
void JSArray::sort(ExecState* exec)
{
ASSERT(!inSparseIndexingMode());
switch (structure()->indexingType()) {
case ArrayClass:
case ArrayWithUndecided:
return;
case ArrayWithInt32: {
unsigned lengthNotIncludingUndefined;
unsigned newRelevantLength;
compactForSorting<ArrayWithInt32>(
lengthNotIncludingUndefined, newRelevantLength);
sortCompactedVector<ArrayWithInt32>(
exec, m_butterfly->contiguousInt32(), lengthNotIncludingUndefined);
return;
}
case ArrayWithDouble: {
unsigned lengthNotIncludingUndefined;
unsigned newRelevantLength;
compactForSorting<ArrayWithDouble>(
lengthNotIncludingUndefined, newRelevantLength);
sortCompactedVector<ArrayWithDouble>(
exec, m_butterfly->contiguousDouble(), lengthNotIncludingUndefined);
return;
}
case ArrayWithContiguous: {
unsigned lengthNotIncludingUndefined;
unsigned newRelevantLength;
compactForSorting<ArrayWithContiguous>(
lengthNotIncludingUndefined, newRelevantLength);
sortCompactedVector<ArrayWithContiguous>(
exec, m_butterfly->contiguous(), lengthNotIncludingUndefined);
return;
}
case ArrayWithArrayStorage: {
unsigned lengthNotIncludingUndefined;
unsigned newRelevantLength;
compactForSorting<ArrayWithArrayStorage>(
lengthNotIncludingUndefined, newRelevantLength);
ArrayStorage* storage = m_butterfly->arrayStorage();
ASSERT(!storage->m_sparseMap);
sortCompactedVector<ArrayWithArrayStorage>(exec, storage->vector(), lengthNotIncludingUndefined);
return;
}
default:
RELEASE_ASSERT_NOT_REACHED();
}
}
struct AVLTreeNodeForArrayCompare {
JSValue value;
// Child pointers. The high bit of gt is robbed and used as the
// balance factor sign. The high bit of lt is robbed and used as
// the magnitude of the balance factor.
int32_t gt;
int32_t lt;
};
struct AVLTreeAbstractorForArrayCompare {
typedef int32_t handle; // Handle is an index into m_nodes vector.
typedef JSValue key;
typedef int32_t size;
Vector<AVLTreeNodeForArrayCompare, 0, UnsafeVectorOverflow> m_nodes;
ExecState* m_exec;
JSValue m_compareFunction;
CallType m_compareCallType;
const CallData* m_compareCallData;
OwnPtr<CachedCall> m_cachedCall;
handle get_less(handle h) { return m_nodes[h].lt & 0x7FFFFFFF; }
void set_less(handle h, handle lh) { m_nodes[h].lt &= 0x80000000; m_nodes[h].lt |= lh; }
handle get_greater(handle h) { return m_nodes[h].gt & 0x7FFFFFFF; }
void set_greater(handle h, handle gh) { m_nodes[h].gt &= 0x80000000; m_nodes[h].gt |= gh; }
int get_balance_factor(handle h)
{
if (m_nodes[h].gt & 0x80000000)
return -1;
return static_cast<unsigned>(m_nodes[h].lt) >> 31;
}
void set_balance_factor(handle h, int bf)
{
if (bf == 0) {
m_nodes[h].lt &= 0x7FFFFFFF;
m_nodes[h].gt &= 0x7FFFFFFF;
} else {
m_nodes[h].lt |= 0x80000000;
if (bf < 0)
m_nodes[h].gt |= 0x80000000;
else
m_nodes[h].gt &= 0x7FFFFFFF;
}
}
int compare_key_key(key va, key vb)
{
ASSERT(!va.isUndefined());
ASSERT(!vb.isUndefined());
if (m_exec->hadException())
return 1;
double compareResult;
if (m_cachedCall) {
m_cachedCall->setThis(jsUndefined());
m_cachedCall->setArgument(0, va);
m_cachedCall->setArgument(1, vb);
compareResult = m_cachedCall->call().toNumber(m_cachedCall->newCallFrame(m_exec));
} else {
MarkedArgumentBuffer arguments;
arguments.append(va);
arguments.append(vb);
compareResult = call(m_exec, m_compareFunction, m_compareCallType, *m_compareCallData, jsUndefined(), arguments).toNumber(m_exec);
}
return (compareResult < 0) ? -1 : 1; // Not passing equality through, because we need to store all values, even if equivalent.
}
int compare_key_node(key k, handle h) { return compare_key_key(k, m_nodes[h].value); }
int compare_node_node(handle h1, handle h2) { return compare_key_key(m_nodes[h1].value, m_nodes[h2].value); }
static handle null() { return 0x7FFFFFFF; }
};
template<IndexingType indexingType>
void JSArray::sortVector(ExecState* exec, JSValue compareFunction, CallType callType, const CallData& callData)
{
ASSERT(!inSparseIndexingMode());
ASSERT(indexingType == structure()->indexingType());
// FIXME: This ignores exceptions raised in the compare function or in toNumber.
// The maximum tree depth is compiled in - but the caller is clearly up to no good
// if a larger array is passed.
ASSERT(m_butterfly->publicLength() <= static_cast<unsigned>(std::numeric_limits<int>::max()));
if (m_butterfly->publicLength() > static_cast<unsigned>(std::numeric_limits<int>::max()))
return;
unsigned usedVectorLength = relevantLength<indexingType>();
unsigned nodeCount = usedVectorLength;
if (!nodeCount)
return;
AVLTree<AVLTreeAbstractorForArrayCompare, 44> tree; // Depth 44 is enough for 2^31 items
tree.abstractor().m_exec = exec;
tree.abstractor().m_compareFunction = compareFunction;
tree.abstractor().m_compareCallType = callType;
tree.abstractor().m_compareCallData = &callData;
tree.abstractor().m_nodes.grow(nodeCount);
if (callType == CallTypeJS)
tree.abstractor().m_cachedCall = adoptPtr(new CachedCall(exec, jsCast<JSFunction*>(compareFunction), 2));
if (!tree.abstractor().m_nodes.begin()) {
throwOutOfMemoryError(exec);
return;
}
// FIXME: If the compare function modifies the array, the vector, map, etc. could be modified
// right out from under us while we're building the tree here.
unsigned numDefined = 0;
unsigned numUndefined = 0;
// Iterate over the array, ignoring missing values, counting undefined ones, and inserting all other ones into the tree.
for (; numDefined < usedVectorLength; ++numDefined) {
if (numDefined >= m_butterfly->vectorLength())
break;
JSValue v = getHolyIndexQuickly(numDefined);
if (!v || v.isUndefined())
break;
tree.abstractor().m_nodes[numDefined].value = v;
tree.insert(numDefined);
}
for (unsigned i = numDefined; i < usedVectorLength; ++i) {
if (i >= m_butterfly->vectorLength())
break;
JSValue v = getHolyIndexQuickly(i);
if (v) {
if (v.isUndefined())
++numUndefined;
else {
tree.abstractor().m_nodes[numDefined].value = v;
tree.insert(numDefined);
++numDefined;
}
}
}
unsigned newUsedVectorLength = numDefined + numUndefined;
// The array size may have changed. Figure out the new bounds.
unsigned newestUsedVectorLength = currentRelevantLength();
unsigned elementsToExtractThreshold = min(min(newestUsedVectorLength, numDefined), static_cast<unsigned>(tree.abstractor().m_nodes.size()));
unsigned undefinedElementsThreshold = min(newestUsedVectorLength, newUsedVectorLength);
unsigned clearElementsThreshold = min(newestUsedVectorLength, usedVectorLength);
// Copy the values back into m_storage.
AVLTree<AVLTreeAbstractorForArrayCompare, 44>::Iterator iter;
iter.start_iter_least(tree);
VM& vm = exec->vm();
for (unsigned i = 0; i < elementsToExtractThreshold; ++i) {
ASSERT(i < butterfly()->vectorLength());
if (structure()->indexingType() == ArrayWithDouble)
butterfly()->contiguousDouble()[i] = tree.abstractor().m_nodes[*iter].value.asNumber();
else
currentIndexingData()[i].set(vm, this, tree.abstractor().m_nodes[*iter].value);
++iter;
}
// Put undefined values back in.
switch (structure()->indexingType()) {
case ArrayWithInt32:
case ArrayWithDouble:
ASSERT(elementsToExtractThreshold == undefinedElementsThreshold);
break;
default:
for (unsigned i = elementsToExtractThreshold; i < undefinedElementsThreshold; ++i) {
ASSERT(i < butterfly()->vectorLength());
currentIndexingData()[i].setUndefined();
}
}
// Ensure that unused values in the vector are zeroed out.
for (unsigned i = undefinedElementsThreshold; i < clearElementsThreshold; ++i) {
ASSERT(i < butterfly()->vectorLength());
if (structure()->indexingType() == ArrayWithDouble)
butterfly()->contiguousDouble()[i] = QNaN;
else
currentIndexingData()[i].clear();
}
if (hasArrayStorage(structure()->indexingType()))
arrayStorage()->m_numValuesInVector = newUsedVectorLength;
}
void JSArray::sort(ExecState* exec, JSValue compareFunction, CallType callType, const CallData& callData)
{
ASSERT(!inSparseIndexingMode());
switch (structure()->indexingType()) {
case ArrayClass:
case ArrayWithUndecided:
return;
case ArrayWithInt32:
sortVector<ArrayWithInt32>(exec, compareFunction, callType, callData);
return;
case ArrayWithDouble:
sortVector<ArrayWithDouble>(exec, compareFunction, callType, callData);
return;
case ArrayWithContiguous:
sortVector<ArrayWithContiguous>(exec, compareFunction, callType, callData);
return;
case ArrayWithArrayStorage:
sortVector<ArrayWithArrayStorage>(exec, compareFunction, callType, callData);
return;
default:
RELEASE_ASSERT_NOT_REACHED();
}
}
void JSArray::fillArgList(ExecState* exec, MarkedArgumentBuffer& args)
{
unsigned i = 0;
unsigned vectorEnd;
WriteBarrier<Unknown>* vector;
switch (structure()->indexingType()) {
case ArrayClass:
return;
case ArrayWithUndecided: {
vector = 0;
vectorEnd = 0;
break;
}
case ArrayWithInt32:
case ArrayWithContiguous: {
vectorEnd = m_butterfly->publicLength();
vector = m_butterfly->contiguous().data();
break;
}
case ArrayWithDouble: {
vector = 0;
vectorEnd = 0;
for (; i < m_butterfly->publicLength(); ++i) {
double v = butterfly()->contiguousDouble()[i];
if (v != v)
break;
args.append(JSValue(JSValue::EncodeAsDouble, v));
}
break;
}
case ARRAY_WITH_ARRAY_STORAGE_INDEXING_TYPES: {
ArrayStorage* storage = m_butterfly->arrayStorage();
vector = storage->m_vector;
vectorEnd = min(storage->length(), storage->vectorLength());
break;
}
default:
CRASH();
vector = 0;
vectorEnd = 0;
break;
}
for (; i < vectorEnd; ++i) {
WriteBarrier<Unknown>& v = vector[i];
if (!v)
break;
args.append(v.get());
}
for (; i < length(); ++i)
args.append(get(exec, i));
}
void JSArray::copyToArguments(ExecState* exec, CallFrame* callFrame, uint32_t length)
{
unsigned i = 0;
WriteBarrier<Unknown>* vector;
unsigned vectorEnd;
ASSERT(length == this->length());
switch (structure()->indexingType()) {
case ArrayClass:
return;
case ArrayWithUndecided: {
vector = 0;
vectorEnd = 0;
break;
}
case ArrayWithInt32:
case ArrayWithContiguous: {
vector = m_butterfly->contiguous().data();
vectorEnd = m_butterfly->publicLength();
break;
}
case ArrayWithDouble: {
vector = 0;
vectorEnd = 0;
for (; i < m_butterfly->publicLength(); ++i) {
ASSERT(i < butterfly()->vectorLength());
double v = m_butterfly->contiguousDouble()[i];
if (v != v)
break;
callFrame->setArgument(i, JSValue(JSValue::EncodeAsDouble, v));
}
break;
}
case ARRAY_WITH_ARRAY_STORAGE_INDEXING_TYPES: {
ArrayStorage* storage = m_butterfly->arrayStorage();
vector = storage->m_vector;
vectorEnd = min(length, storage->vectorLength());
break;
}
default:
CRASH();
vector = 0;
vectorEnd = 0;
break;
}
for (; i < vectorEnd; ++i) {
WriteBarrier<Unknown>& v = vector[i];
if (!v)
break;
callFrame->setArgument(i, v.get());
}
for (; i < length; ++i)
callFrame->setArgument(i, get(exec, i));
}
template<IndexingType indexingType>
void JSArray::compactForSorting(unsigned& numDefined, unsigned& newRelevantLength)
{
ASSERT(!inSparseIndexingMode());
ASSERT(indexingType == structure()->indexingType());
unsigned myRelevantLength = relevantLength<indexingType>();
numDefined = 0;
unsigned numUndefined = 0;
for (; numDefined < myRelevantLength; ++numDefined) {
ASSERT(numDefined < m_butterfly->vectorLength());
if (indexingType == ArrayWithInt32) {
JSValue v = m_butterfly->contiguousInt32()[numDefined].get();
if (!v)
break;
ASSERT(v.isInt32());
continue;
}
if (indexingType == ArrayWithDouble) {
double v = m_butterfly->contiguousDouble()[numDefined];
if (v != v)
break;
continue;
}
JSValue v = indexingData<indexingType>()[numDefined].get();
if (!v || v.isUndefined())
break;
}
for (unsigned i = numDefined; i < myRelevantLength; ++i) {
ASSERT(i < m_butterfly->vectorLength());
if (indexingType == ArrayWithInt32) {
JSValue v = m_butterfly->contiguousInt32()[i].get();
if (!v)
continue;
ASSERT(v.isInt32());
ASSERT(numDefined < m_butterfly->vectorLength());
m_butterfly->contiguousInt32()[numDefined++].setWithoutWriteBarrier(v);
continue;
}
if (indexingType == ArrayWithDouble) {
double v = m_butterfly->contiguousDouble()[i];
if (v != v)
continue;
ASSERT(numDefined < m_butterfly->vectorLength());
m_butterfly->contiguousDouble()[numDefined++] = v;
continue;
}
JSValue v = indexingData<indexingType>()[i].get();
if (v) {
if (v.isUndefined())
++numUndefined;
else {
ASSERT(numDefined < m_butterfly->vectorLength());
indexingData<indexingType>()[numDefined++].setWithoutWriteBarrier(v);
}
}
}
newRelevantLength = numDefined + numUndefined;
if (hasArrayStorage(indexingType))
RELEASE_ASSERT(!arrayStorage()->m_sparseMap);
switch (indexingType) {
case ArrayWithInt32:
case ArrayWithDouble:
RELEASE_ASSERT(numDefined == newRelevantLength);
break;
default:
for (unsigned i = numDefined; i < newRelevantLength; ++i) {
ASSERT(i < m_butterfly->vectorLength());
indexingData<indexingType>()[i].setUndefined();
}
break;
}
for (unsigned i = newRelevantLength; i < myRelevantLength; ++i) {
ASSERT(i < m_butterfly->vectorLength());
if (indexingType == ArrayWithDouble)
m_butterfly->contiguousDouble()[i] = QNaN;
else
indexingData<indexingType>()[i].clear();
}
if (hasArrayStorage(indexingType))
arrayStorage()->m_numValuesInVector = newRelevantLength;
}
} // namespace JSC
|