1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641
|
/*
* Copyright (C) 1999-2000 Harri Porten (porten@kde.org)
* Copyright (C) 2007, 2008 Apple Inc. All Rights Reserved.
*
* This library is free software; you can redistribute it and/or
* modify it under the terms of the GNU Lesser General Public
* License as published by the Free Software Foundation; either
* version 2 of the License, or (at your option) any later version.
*
* This library is distributed in the hope that it will be useful,
* but WITHOUT ANY WARRANTY; without even the implied warranty of
* MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU
* Lesser General Public License for more details.
*
* You should have received a copy of the GNU Lesser General Public
* License along with this library; if not, write to the Free Software
* Foundation, Inc., 51 Franklin Street, Fifth Floor, Boston, MA 02110-1301 USA
*
*/
#include "config.h"
#include "MathObject.h"
#include "Lookup.h"
#include "ObjectPrototype.h"
#include "Operations.h"
#include <time.h>
#include <wtf/Assertions.h>
#include <wtf/MathExtras.h>
#include <wtf/RandomNumber.h>
#include <wtf/RandomNumberSeed.h>
namespace JSC {
ASSERT_HAS_TRIVIAL_DESTRUCTOR(MathObject);
static EncodedJSValue JSC_HOST_CALL mathProtoFuncAbs(ExecState*);
static EncodedJSValue JSC_HOST_CALL mathProtoFuncACos(ExecState*);
static EncodedJSValue JSC_HOST_CALL mathProtoFuncASin(ExecState*);
static EncodedJSValue JSC_HOST_CALL mathProtoFuncATan(ExecState*);
static EncodedJSValue JSC_HOST_CALL mathProtoFuncATan2(ExecState*);
static EncodedJSValue JSC_HOST_CALL mathProtoFuncCeil(ExecState*);
static EncodedJSValue JSC_HOST_CALL mathProtoFuncCos(ExecState*);
static EncodedJSValue JSC_HOST_CALL mathProtoFuncExp(ExecState*);
static EncodedJSValue JSC_HOST_CALL mathProtoFuncFloor(ExecState*);
static EncodedJSValue JSC_HOST_CALL mathProtoFuncLog(ExecState*);
static EncodedJSValue JSC_HOST_CALL mathProtoFuncMax(ExecState*);
static EncodedJSValue JSC_HOST_CALL mathProtoFuncMin(ExecState*);
static EncodedJSValue JSC_HOST_CALL mathProtoFuncPow(ExecState*);
static EncodedJSValue JSC_HOST_CALL mathProtoFuncRandom(ExecState*);
static EncodedJSValue JSC_HOST_CALL mathProtoFuncRound(ExecState*);
static EncodedJSValue JSC_HOST_CALL mathProtoFuncSin(ExecState*);
static EncodedJSValue JSC_HOST_CALL mathProtoFuncSqrt(ExecState*);
static EncodedJSValue JSC_HOST_CALL mathProtoFuncTan(ExecState*);
static EncodedJSValue JSC_HOST_CALL mathProtoFuncIMul(ExecState*);
}
#include "MathObject.lut.h"
namespace JSC {
const ClassInfo MathObject::s_info = { "Math", &Base::s_info, 0, ExecState::mathTable, CREATE_METHOD_TABLE(MathObject) };
/* Source for MathObject.lut.h
@begin mathTable
abs mathProtoFuncAbs DontEnum|Function 1
acos mathProtoFuncACos DontEnum|Function 1
asin mathProtoFuncASin DontEnum|Function 1
atan mathProtoFuncATan DontEnum|Function 1
atan2 mathProtoFuncATan2 DontEnum|Function 2
ceil mathProtoFuncCeil DontEnum|Function 1
cos mathProtoFuncCos DontEnum|Function 1
exp mathProtoFuncExp DontEnum|Function 1
floor mathProtoFuncFloor DontEnum|Function 1
log mathProtoFuncLog DontEnum|Function 1
max mathProtoFuncMax DontEnum|Function 2
min mathProtoFuncMin DontEnum|Function 2
pow mathProtoFuncPow DontEnum|Function 2
random mathProtoFuncRandom DontEnum|Function 0
round mathProtoFuncRound DontEnum|Function 1
sin mathProtoFuncSin DontEnum|Function 1
sqrt mathProtoFuncSqrt DontEnum|Function 1
tan mathProtoFuncTan DontEnum|Function 1
imul mathProtoFuncIMul DontEnum|Function 2
@end
*/
MathObject::MathObject(JSGlobalObject* globalObject, Structure* structure)
: JSNonFinalObject(globalObject->vm(), structure)
{
}
void MathObject::finishCreation(ExecState* exec, JSGlobalObject* globalObject)
{
Base::finishCreation(globalObject->vm());
ASSERT(inherits(&s_info));
putDirectWithoutTransition(exec->vm(), Identifier(exec, "E"), jsNumber(exp(1.0)), DontDelete | DontEnum | ReadOnly);
putDirectWithoutTransition(exec->vm(), Identifier(exec, "LN2"), jsNumber(log(2.0)), DontDelete | DontEnum | ReadOnly);
putDirectWithoutTransition(exec->vm(), Identifier(exec, "LN10"), jsNumber(log(10.0)), DontDelete | DontEnum | ReadOnly);
putDirectWithoutTransition(exec->vm(), Identifier(exec, "LOG2E"), jsNumber(1.0 / log(2.0)), DontDelete | DontEnum | ReadOnly);
putDirectWithoutTransition(exec->vm(), Identifier(exec, "LOG10E"), jsNumber(0.4342944819032518), DontDelete | DontEnum | ReadOnly); // See ECMA-262 15.8.1.5
putDirectWithoutTransition(exec->vm(), Identifier(exec, "PI"), jsNumber(piDouble), DontDelete | DontEnum | ReadOnly);
putDirectWithoutTransition(exec->vm(), Identifier(exec, "SQRT1_2"), jsNumber(sqrt(0.5)), DontDelete | DontEnum | ReadOnly);
putDirectWithoutTransition(exec->vm(), Identifier(exec, "SQRT2"), jsNumber(sqrt(2.0)), DontDelete | DontEnum | ReadOnly);
}
bool MathObject::getOwnPropertySlot(JSCell* cell, ExecState* exec, PropertyName propertyName, PropertySlot &slot)
{
return getStaticFunctionSlot<JSObject>(exec, ExecState::mathTable(exec), jsCast<MathObject*>(cell), propertyName, slot);
}
bool MathObject::getOwnPropertyDescriptor(JSObject* object, ExecState* exec, PropertyName propertyName, PropertyDescriptor& descriptor)
{
return getStaticFunctionDescriptor<JSObject>(exec, ExecState::mathTable(exec), jsCast<MathObject*>(object), propertyName, descriptor);
}
// ------------------------------ Functions --------------------------------
EncodedJSValue JSC_HOST_CALL mathProtoFuncAbs(ExecState* exec)
{
return JSValue::encode(jsNumber(fabs(exec->argument(0).toNumber(exec))));
}
EncodedJSValue JSC_HOST_CALL mathProtoFuncACos(ExecState* exec)
{
return JSValue::encode(jsDoubleNumber(acos(exec->argument(0).toNumber(exec))));
}
EncodedJSValue JSC_HOST_CALL mathProtoFuncASin(ExecState* exec)
{
return JSValue::encode(jsDoubleNumber(asin(exec->argument(0).toNumber(exec))));
}
EncodedJSValue JSC_HOST_CALL mathProtoFuncATan(ExecState* exec)
{
return JSValue::encode(jsDoubleNumber(atan(exec->argument(0).toNumber(exec))));
}
EncodedJSValue JSC_HOST_CALL mathProtoFuncATan2(ExecState* exec)
{
double arg0 = exec->argument(0).toNumber(exec);
double arg1 = exec->argument(1).toNumber(exec);
return JSValue::encode(jsDoubleNumber(atan2(arg0, arg1)));
}
EncodedJSValue JSC_HOST_CALL mathProtoFuncCeil(ExecState* exec)
{
return JSValue::encode(jsNumber(ceil(exec->argument(0).toNumber(exec))));
}
EncodedJSValue JSC_HOST_CALL mathProtoFuncCos(ExecState* exec)
{
return JSValue::encode(jsDoubleNumber(cos(exec->argument(0).toNumber(exec))));
}
EncodedJSValue JSC_HOST_CALL mathProtoFuncExp(ExecState* exec)
{
return JSValue::encode(jsDoubleNumber(exp(exec->argument(0).toNumber(exec))));
}
EncodedJSValue JSC_HOST_CALL mathProtoFuncFloor(ExecState* exec)
{
return JSValue::encode(jsNumber(floor(exec->argument(0).toNumber(exec))));
}
EncodedJSValue JSC_HOST_CALL mathProtoFuncLog(ExecState* exec)
{
return JSValue::encode(jsDoubleNumber(log(exec->argument(0).toNumber(exec))));
}
EncodedJSValue JSC_HOST_CALL mathProtoFuncMax(ExecState* exec)
{
unsigned argsCount = exec->argumentCount();
double result = -std::numeric_limits<double>::infinity();
for (unsigned k = 0; k < argsCount; ++k) {
double val = exec->argument(k).toNumber(exec);
if (std::isnan(val)) {
result = QNaN;
break;
}
if (val > result || (!val && !result && !std::signbit(val)))
result = val;
}
return JSValue::encode(jsNumber(result));
}
EncodedJSValue JSC_HOST_CALL mathProtoFuncMin(ExecState* exec)
{
unsigned argsCount = exec->argumentCount();
double result = +std::numeric_limits<double>::infinity();
for (unsigned k = 0; k < argsCount; ++k) {
double val = exec->argument(k).toNumber(exec);
if (std::isnan(val)) {
result = QNaN;
break;
}
if (val < result || (!val && !result && std::signbit(val)))
result = val;
}
return JSValue::encode(jsNumber(result));
}
#if PLATFORM(IOS) && CPU(ARM_THUMB2)
static double fdlibmPow(double x, double y);
static ALWAYS_INLINE bool isDenormal(double x)
{
static const uint64_t signbit = 0x8000000000000000ULL;
static const uint64_t minNormal = 0x0001000000000000ULL;
return (bitwise_cast<uint64_t>(x) & ~signbit) - 1 < minNormal - 1;
}
static ALWAYS_INLINE bool isEdgeCase(double x)
{
static const uint64_t signbit = 0x8000000000000000ULL;
static const uint64_t infinity = 0x7fffffffffffffffULL;
return (bitwise_cast<uint64_t>(x) & ~signbit) - 1 >= infinity - 1;
}
static ALWAYS_INLINE double mathPow(double x, double y)
{
if (!isDenormal(x) && !isDenormal(y)) {
double libmResult = pow(x,y);
if (libmResult || isEdgeCase(x) || isEdgeCase(y))
return libmResult;
}
return fdlibmPow(x,y);
}
#else
ALWAYS_INLINE double mathPow(double x, double y)
{
return pow(x, y);
}
#endif
EncodedJSValue JSC_HOST_CALL mathProtoFuncPow(ExecState* exec)
{
// ECMA 15.8.2.1.13
double arg = exec->argument(0).toNumber(exec);
double arg2 = exec->argument(1).toNumber(exec);
if (std::isnan(arg2))
return JSValue::encode(jsNaN());
if (std::isinf(arg2) && fabs(arg) == 1)
return JSValue::encode(jsNaN());
return JSValue::encode(jsNumber(mathPow(arg, arg2)));
}
EncodedJSValue JSC_HOST_CALL mathProtoFuncRandom(ExecState* exec)
{
return JSValue::encode(jsDoubleNumber(exec->lexicalGlobalObject()->weakRandomNumber()));
}
EncodedJSValue JSC_HOST_CALL mathProtoFuncRound(ExecState* exec)
{
double arg = exec->argument(0).toNumber(exec);
double integer = ceil(arg);
return JSValue::encode(jsNumber(integer - (integer - arg > 0.5)));
}
EncodedJSValue JSC_HOST_CALL mathProtoFuncSin(ExecState* exec)
{
return JSValue::encode(exec->vm().cachedSin(exec->argument(0).toNumber(exec)));
}
EncodedJSValue JSC_HOST_CALL mathProtoFuncSqrt(ExecState* exec)
{
return JSValue::encode(jsDoubleNumber(sqrt(exec->argument(0).toNumber(exec))));
}
EncodedJSValue JSC_HOST_CALL mathProtoFuncTan(ExecState* exec)
{
return JSValue::encode(jsDoubleNumber(tan(exec->argument(0).toNumber(exec))));
}
EncodedJSValue JSC_HOST_CALL mathProtoFuncIMul(ExecState* exec)
{
int32_t left = exec->argument(0).toInt32(exec);
if (exec->hadException())
return JSValue::encode(jsNull());
int32_t right = exec->argument(1).toInt32(exec);
return JSValue::encode(jsNumber(left * right));
}
#if PLATFORM(IOS) && CPU(ARM_THUMB2)
// The following code is taken from netlib.org:
// http://www.netlib.org/fdlibm/fdlibm.h
// http://www.netlib.org/fdlibm/e_pow.c
// http://www.netlib.org/fdlibm/s_scalbn.c
//
// And was originally distributed under the following license:
/*
* ====================================================
* Copyright (C) 1993 by Sun Microsystems, Inc. All rights reserved.
*
* Developed at SunSoft, a Sun Microsystems, Inc. business.
* Permission to use, copy, modify, and distribute this
* software is freely granted, provided that this notice
* is preserved.
* ====================================================
*/
/*
* ====================================================
* Copyright (C) 2004 by Sun Microsystems, Inc. All rights reserved.
*
* Permission to use, copy, modify, and distribute this
* software is freely granted, provided that this notice
* is preserved.
* ====================================================
*/
/* __ieee754_pow(x,y) return x**y
*
* n
* Method: Let x = 2 * (1+f)
* 1. Compute and return log2(x) in two pieces:
* log2(x) = w1 + w2,
* where w1 has 53-24 = 29 bit trailing zeros.
* 2. Perform y*log2(x) = n+y' by simulating muti-precision
* arithmetic, where |y'|<=0.5.
* 3. Return x**y = 2**n*exp(y'*log2)
*
* Special cases:
* 1. (anything) ** 0 is 1
* 2. (anything) ** 1 is itself
* 3. (anything) ** NAN is NAN
* 4. NAN ** (anything except 0) is NAN
* 5. +-(|x| > 1) ** +INF is +INF
* 6. +-(|x| > 1) ** -INF is +0
* 7. +-(|x| < 1) ** +INF is +0
* 8. +-(|x| < 1) ** -INF is +INF
* 9. +-1 ** +-INF is NAN
* 10. +0 ** (+anything except 0, NAN) is +0
* 11. -0 ** (+anything except 0, NAN, odd integer) is +0
* 12. +0 ** (-anything except 0, NAN) is +INF
* 13. -0 ** (-anything except 0, NAN, odd integer) is +INF
* 14. -0 ** (odd integer) = -( +0 ** (odd integer) )
* 15. +INF ** (+anything except 0,NAN) is +INF
* 16. +INF ** (-anything except 0,NAN) is +0
* 17. -INF ** (anything) = -0 ** (-anything)
* 18. (-anything) ** (integer) is (-1)**(integer)*(+anything**integer)
* 19. (-anything except 0 and inf) ** (non-integer) is NAN
*
* Accuracy:
* pow(x,y) returns x**y nearly rounded. In particular
* pow(integer,integer)
* always returns the correct integer provided it is
* representable.
*
* Constants :
* The hexadecimal values are the intended ones for the following
* constants. The decimal values may be used, provided that the
* compiler will convert from decimal to binary accurately enough
* to produce the hexadecimal values shown.
*/
#define __HI(x) *(1+(int*)&x)
#define __LO(x) *(int*)&x
static const double
bp[] = {1.0, 1.5,},
dp_h[] = { 0.0, 5.84962487220764160156e-01,}, /* 0x3FE2B803, 0x40000000 */
dp_l[] = { 0.0, 1.35003920212974897128e-08,}, /* 0x3E4CFDEB, 0x43CFD006 */
zero = 0.0,
one = 1.0,
two = 2.0,
two53 = 9007199254740992.0, /* 0x43400000, 0x00000000 */
huge = 1.0e300,
tiny = 1.0e-300,
/* for scalbn */
two54 = 1.80143985094819840000e+16, /* 0x43500000, 0x00000000 */
twom54 = 5.55111512312578270212e-17, /* 0x3C900000, 0x00000000 */
/* poly coefs for (3/2)*(log(x)-2s-2/3*s**3 */
L1 = 5.99999999999994648725e-01, /* 0x3FE33333, 0x33333303 */
L2 = 4.28571428578550184252e-01, /* 0x3FDB6DB6, 0xDB6FABFF */
L3 = 3.33333329818377432918e-01, /* 0x3FD55555, 0x518F264D */
L4 = 2.72728123808534006489e-01, /* 0x3FD17460, 0xA91D4101 */
L5 = 2.30660745775561754067e-01, /* 0x3FCD864A, 0x93C9DB65 */
L6 = 2.06975017800338417784e-01, /* 0x3FCA7E28, 0x4A454EEF */
P1 = 1.66666666666666019037e-01, /* 0x3FC55555, 0x5555553E */
P2 = -2.77777777770155933842e-03, /* 0xBF66C16C, 0x16BEBD93 */
P3 = 6.61375632143793436117e-05, /* 0x3F11566A, 0xAF25DE2C */
P4 = -1.65339022054652515390e-06, /* 0xBEBBBD41, 0xC5D26BF1 */
P5 = 4.13813679705723846039e-08, /* 0x3E663769, 0x72BEA4D0 */
lg2 = 6.93147180559945286227e-01, /* 0x3FE62E42, 0xFEFA39EF */
lg2_h = 6.93147182464599609375e-01, /* 0x3FE62E43, 0x00000000 */
lg2_l = -1.90465429995776804525e-09, /* 0xBE205C61, 0x0CA86C39 */
ovt = 8.0085662595372944372e-0017, /* -(1024-log2(ovfl+.5ulp)) */
cp = 9.61796693925975554329e-01, /* 0x3FEEC709, 0xDC3A03FD =2/(3ln2) */
cp_h = 9.61796700954437255859e-01, /* 0x3FEEC709, 0xE0000000 =(float)cp */
cp_l = -7.02846165095275826516e-09, /* 0xBE3E2FE0, 0x145B01F5 =tail of cp_h*/
ivln2 = 1.44269504088896338700e+00, /* 0x3FF71547, 0x652B82FE =1/ln2 */
ivln2_h = 1.44269502162933349609e+00, /* 0x3FF71547, 0x60000000 =24b 1/ln2*/
ivln2_l = 1.92596299112661746887e-08; /* 0x3E54AE0B, 0xF85DDF44 =1/ln2 tail*/
inline double fdlibmScalbn (double x, int n)
{
int k,hx,lx;
hx = __HI(x);
lx = __LO(x);
k = (hx&0x7ff00000)>>20; /* extract exponent */
if (k==0) { /* 0 or subnormal x */
if ((lx|(hx&0x7fffffff))==0) return x; /* +-0 */
x *= two54;
hx = __HI(x);
k = ((hx&0x7ff00000)>>20) - 54;
if (n< -50000) return tiny*x; /*underflow*/
}
if (k==0x7ff) return x+x; /* NaN or Inf */
k = k+n;
if (k > 0x7fe) return huge*copysign(huge,x); /* overflow */
if (k > 0) /* normal result */
{__HI(x) = (hx&0x800fffff)|(k<<20); return x;}
if (k <= -54) {
if (n > 50000) /* in case integer overflow in n+k */
return huge*copysign(huge,x); /*overflow*/
else return tiny*copysign(tiny,x); /*underflow*/
}
k += 54; /* subnormal result */
__HI(x) = (hx&0x800fffff)|(k<<20);
return x*twom54;
}
double fdlibmPow(double x, double y)
{
double z,ax,z_h,z_l,p_h,p_l;
double y1,t1,t2,r,s,t,u,v,w;
int i0,i1,i,j,k,yisint,n;
int hx,hy,ix,iy;
unsigned lx,ly;
i0 = ((*(int*)&one)>>29)^1; i1=1-i0;
hx = __HI(x); lx = __LO(x);
hy = __HI(y); ly = __LO(y);
ix = hx&0x7fffffff; iy = hy&0x7fffffff;
/* y==zero: x**0 = 1 */
if((iy|ly)==0) return one;
/* +-NaN return x+y */
if(ix > 0x7ff00000 || ((ix==0x7ff00000)&&(lx!=0)) ||
iy > 0x7ff00000 || ((iy==0x7ff00000)&&(ly!=0)))
return x+y;
/* determine if y is an odd int when x < 0
* yisint = 0 ... y is not an integer
* yisint = 1 ... y is an odd int
* yisint = 2 ... y is an even int
*/
yisint = 0;
if(hx<0) {
if(iy>=0x43400000) yisint = 2; /* even integer y */
else if(iy>=0x3ff00000) {
k = (iy>>20)-0x3ff; /* exponent */
if(k>20) {
j = ly>>(52-k);
if(static_cast<unsigned>(j<<(52-k))==ly) yisint = 2-(j&1);
} else if(ly==0) {
j = iy>>(20-k);
if((j<<(20-k))==iy) yisint = 2-(j&1);
}
}
}
/* special value of y */
if(ly==0) {
if (iy==0x7ff00000) { /* y is +-inf */
if(((ix-0x3ff00000)|lx)==0)
return y - y; /* inf**+-1 is NaN */
else if (ix >= 0x3ff00000)/* (|x|>1)**+-inf = inf,0 */
return (hy>=0)? y: zero;
else /* (|x|<1)**-,+inf = inf,0 */
return (hy<0)?-y: zero;
}
if(iy==0x3ff00000) { /* y is +-1 */
if(hy<0) return one/x; else return x;
}
if(hy==0x40000000) return x*x; /* y is 2 */
if(hy==0x3fe00000) { /* y is 0.5 */
if(hx>=0) /* x >= +0 */
return sqrt(x);
}
}
ax = fabs(x);
/* special value of x */
if(lx==0) {
if(ix==0x7ff00000||ix==0||ix==0x3ff00000){
z = ax; /*x is +-0,+-inf,+-1*/
if(hy<0) z = one/z; /* z = (1/|x|) */
if(hx<0) {
if(((ix-0x3ff00000)|yisint)==0) {
z = (z-z)/(z-z); /* (-1)**non-int is NaN */
} else if(yisint==1)
z = -z; /* (x<0)**odd = -(|x|**odd) */
}
return z;
}
}
n = (hx>>31)+1;
/* (x<0)**(non-int) is NaN */
if((n|yisint)==0) return (x-x)/(x-x);
s = one; /* s (sign of result -ve**odd) = -1 else = 1 */
if((n|(yisint-1))==0) s = -one;/* (-ve)**(odd int) */
/* |y| is huge */
if(iy>0x41e00000) { /* if |y| > 2**31 */
if(iy>0x43f00000){ /* if |y| > 2**64, must o/uflow */
if(ix<=0x3fefffff) return (hy<0)? huge*huge:tiny*tiny;
if(ix>=0x3ff00000) return (hy>0)? huge*huge:tiny*tiny;
}
/* over/underflow if x is not close to one */
if(ix<0x3fefffff) return (hy<0)? s*huge*huge:s*tiny*tiny;
if(ix>0x3ff00000) return (hy>0)? s*huge*huge:s*tiny*tiny;
/* now |1-x| is tiny <= 2**-20, suffice to compute
log(x) by x-x^2/2+x^3/3-x^4/4 */
t = ax-one; /* t has 20 trailing zeros */
w = (t*t)*(0.5-t*(0.3333333333333333333333-t*0.25));
u = ivln2_h*t; /* ivln2_h has 21 sig. bits */
v = t*ivln2_l-w*ivln2;
t1 = u+v;
__LO(t1) = 0;
t2 = v-(t1-u);
} else {
double ss,s2,s_h,s_l,t_h,t_l;
n = 0;
/* take care subnormal number */
if(ix<0x00100000)
{ax *= two53; n -= 53; ix = __HI(ax); }
n += ((ix)>>20)-0x3ff;
j = ix&0x000fffff;
/* determine interval */
ix = j|0x3ff00000; /* normalize ix */
if(j<=0x3988E) k=0; /* |x|<sqrt(3/2) */
else if(j<0xBB67A) k=1; /* |x|<sqrt(3) */
else {k=0;n+=1;ix -= 0x00100000;}
__HI(ax) = ix;
/* compute ss = s_h+s_l = (x-1)/(x+1) or (x-1.5)/(x+1.5) */
u = ax-bp[k]; /* bp[0]=1.0, bp[1]=1.5 */
v = one/(ax+bp[k]);
ss = u*v;
s_h = ss;
__LO(s_h) = 0;
/* t_h=ax+bp[k] High */
t_h = zero;
__HI(t_h)=((ix>>1)|0x20000000)+0x00080000+(k<<18);
t_l = ax - (t_h-bp[k]);
s_l = v*((u-s_h*t_h)-s_h*t_l);
/* compute log(ax) */
s2 = ss*ss;
r = s2*s2*(L1+s2*(L2+s2*(L3+s2*(L4+s2*(L5+s2*L6)))));
r += s_l*(s_h+ss);
s2 = s_h*s_h;
t_h = 3.0+s2+r;
__LO(t_h) = 0;
t_l = r-((t_h-3.0)-s2);
/* u+v = ss*(1+...) */
u = s_h*t_h;
v = s_l*t_h+t_l*ss;
/* 2/(3log2)*(ss+...) */
p_h = u+v;
__LO(p_h) = 0;
p_l = v-(p_h-u);
z_h = cp_h*p_h; /* cp_h+cp_l = 2/(3*log2) */
z_l = cp_l*p_h+p_l*cp+dp_l[k];
/* log2(ax) = (ss+..)*2/(3*log2) = n + dp_h + z_h + z_l */
t = (double)n;
t1 = (((z_h+z_l)+dp_h[k])+t);
__LO(t1) = 0;
t2 = z_l-(((t1-t)-dp_h[k])-z_h);
}
/* split up y into y1+y2 and compute (y1+y2)*(t1+t2) */
y1 = y;
__LO(y1) = 0;
p_l = (y-y1)*t1+y*t2;
p_h = y1*t1;
z = p_l+p_h;
j = __HI(z);
i = __LO(z);
if (j>=0x40900000) { /* z >= 1024 */
if(((j-0x40900000)|i)!=0) /* if z > 1024 */
return s*huge*huge; /* overflow */
else {
if(p_l+ovt>z-p_h) return s*huge*huge; /* overflow */
}
} else if((j&0x7fffffff)>=0x4090cc00 ) { /* z <= -1075 */
if(((j-0xc090cc00)|i)!=0) /* z < -1075 */
return s*tiny*tiny; /* underflow */
else {
if(p_l<=z-p_h) return s*tiny*tiny; /* underflow */
}
}
/*
* compute 2**(p_h+p_l)
*/
i = j&0x7fffffff;
k = (i>>20)-0x3ff;
n = 0;
if(i>0x3fe00000) { /* if |z| > 0.5, set n = [z+0.5] */
n = j+(0x00100000>>(k+1));
k = ((n&0x7fffffff)>>20)-0x3ff; /* new k for n */
t = zero;
__HI(t) = (n&~(0x000fffff>>k));
n = ((n&0x000fffff)|0x00100000)>>(20-k);
if(j<0) n = -n;
p_h -= t;
}
t = p_l+p_h;
__LO(t) = 0;
u = t*lg2_h;
v = (p_l-(t-p_h))*lg2+t*lg2_l;
z = u+v;
w = v-(z-u);
t = z*z;
t1 = z - t*(P1+t*(P2+t*(P3+t*(P4+t*P5))));
r = (z*t1)/(t1-two)-(w+z*w);
z = one-(r-z);
j = __HI(z);
j += (n<<20);
if((j>>20)<=0) z = fdlibmScalbn(z,n); /* subnormal output */
else __HI(z) += (n<<20);
return s*z;
}
#endif
} // namespace JSC
|