1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 721 722 723 724 725 726 727 728 729 730 731 732 733 734 735 736 737 738 739 740 741 742 743 744 745 746 747 748 749 750 751 752 753 754 755 756 757 758 759 760 761 762 763 764 765 766 767 768 769 770 771 772 773 774 775 776 777 778 779 780 781 782 783 784 785 786 787 788 789 790 791 792 793 794 795 796 797 798 799 800 801 802 803 804 805 806 807 808 809 810 811 812 813 814 815 816 817 818 819 820 821 822 823 824 825 826 827 828 829 830 831 832 833 834 835 836 837 838 839 840 841 842 843 844 845 846 847 848 849 850 851 852 853 854 855 856 857 858 859 860 861 862 863 864 865 866 867 868 869 870 871 872 873 874 875 876 877 878 879 880 881 882 883 884 885 886 887 888 889 890 891 892 893 894 895 896 897 898 899 900 901 902 903 904 905 906 907 908 909 910 911 912 913 914 915 916 917 918 919 920 921 922 923 924 925 926 927 928 929 930 931 932 933 934 935 936 937 938 939 940 941 942 943 944 945 946 947 948 949 950 951 952 953 954 955 956 957 958 959 960 961 962 963 964 965 966 967 968 969 970 971 972 973 974 975 976 977 978 979 980 981 982 983 984 985 986 987 988 989 990 991 992 993 994 995 996 997 998 999 1000 1001 1002 1003 1004 1005 1006 1007 1008 1009 1010 1011 1012 1013 1014 1015 1016 1017 1018 1019 1020 1021 1022 1023 1024 1025 1026 1027 1028 1029 1030 1031 1032 1033 1034 1035 1036 1037 1038 1039 1040 1041 1042 1043 1044 1045 1046 1047 1048 1049 1050 1051 1052 1053 1054 1055 1056 1057 1058 1059 1060 1061 1062 1063 1064 1065 1066 1067 1068 1069 1070 1071 1072 1073 1074 1075 1076 1077 1078 1079 1080 1081 1082 1083 1084 1085 1086 1087 1088 1089 1090 1091 1092 1093 1094 1095 1096 1097 1098 1099 1100 1101 1102 1103 1104 1105 1106 1107 1108 1109 1110 1111 1112 1113 1114 1115 1116 1117 1118 1119 1120 1121 1122 1123 1124 1125 1126 1127 1128 1129 1130 1131 1132 1133 1134 1135 1136 1137 1138 1139 1140 1141 1142 1143 1144 1145 1146 1147 1148 1149 1150 1151 1152 1153 1154 1155 1156 1157 1158 1159 1160 1161 1162 1163 1164 1165 1166 1167 1168 1169 1170 1171 1172 1173 1174 1175 1176 1177 1178 1179 1180 1181 1182 1183 1184 1185 1186 1187 1188 1189 1190 1191 1192 1193 1194 1195 1196 1197 1198
|
/*
* Copyright (C) 2011 Apple Inc. All rights reserved.
*
* Redistribution and use in source and binary forms, with or without
* modification, are permitted provided that the following conditions
* are met:
* 1. Redistributions of source code must retain the above copyright
* notice, this list of conditions and the following disclaimer.
* 2. Redistributions in binary form must reproduce the above copyright
* notice, this list of conditions and the following disclaimer in the
* documentation and/or other materials provided with the distribution.
*
* THIS SOFTWARE IS PROVIDED BY APPLE INC. ``AS IS'' AND ANY
* EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
* IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR
* PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL APPLE INC. OR
* CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL,
* EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO,
* PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR
* PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY
* OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT
* (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE
* OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
*/
#include "config.h"
#include "DFGByteCodeParser.h"
#if ENABLE(DFG_JIT)
#include "DFGAliasTracker.h"
#include "DFGScoreBoard.h"
#include "CodeBlock.h"
namespace JSC { namespace DFG {
#if ENABLE(DFG_JIT_RESTRICTIONS)
// FIXME: Temporarily disable arithmetic, until we fix associated performance regressions.
#define ARITHMETIC_OP() m_parseFailed = true
#else
#define ARITHMETIC_OP() ((void)0)
#endif
// === ByteCodeParser ===
//
// This class is used to compile the dataflow graph from a CodeBlock.
class ByteCodeParser {
public:
ByteCodeParser(JSGlobalData* globalData, CodeBlock* codeBlock, Graph& graph)
: m_globalData(globalData)
, m_codeBlock(codeBlock)
, m_graph(graph)
, m_currentIndex(0)
, m_parseFailed(false)
, m_constantUndefined(UINT_MAX)
, m_constantNull(UINT_MAX)
, m_constant1(UINT_MAX)
, m_constants(codeBlock->numberOfConstantRegisters())
, m_numArguments(codeBlock->m_numParameters)
, m_numLocals(codeBlock->m_numCalleeRegisters)
, m_preservedVars(codeBlock->m_numVars)
{
}
// Parse a full CodeBlock of bytecode.
bool parse();
private:
// Parse a single basic block of bytecode instructions.
bool parseBlock(unsigned limit);
// Setup predecessor links in the graph's BasicBlocks.
void setupPredecessors();
// Link GetLocal & SetLocal nodes, to ensure live values are generated.
enum PhiStackType {
LocalPhiStack,
ArgumentPhiStack
};
template<PhiStackType stackType>
void processPhiStack();
// Add spill locations to nodes.
void allocateVirtualRegisters();
// Get/Set the operands/result of a bytecode instruction.
NodeIndex get(int operand)
{
// Is this a constant?
if (operand >= FirstConstantRegisterIndex) {
unsigned constant = operand - FirstConstantRegisterIndex;
ASSERT(constant < m_constants.size());
return getJSConstant(constant);
}
// Is this an argument?
if (operandIsArgument(operand))
return getArgument(operand);
// Must be a local.
return getLocal((unsigned)operand);
}
void set(int operand, NodeIndex value, PredictedType prediction = PredictNone)
{
m_graph.predict(operand, prediction);
// Is this an argument?
if (operandIsArgument(operand)) {
setArgument(operand, value);
return;
}
// Must be a local.
setLocal((unsigned)operand, value);
}
// Used in implementing get/set, above, where the operand is a local variable.
NodeIndex getLocal(unsigned operand)
{
NodeIndex nodeIndex = m_currentBlock->m_locals[operand].value;
if (nodeIndex != NoNode) {
Node& node = m_graph[nodeIndex];
if (node.op == GetLocal)
return nodeIndex;
ASSERT(node.op == SetLocal);
return node.child1;
}
// Check for reads of temporaries from prior blocks,
// expand m_preservedVars to cover these.
m_preservedVars = std::max(m_preservedVars, operand + 1);
NodeIndex phi = addToGraph(Phi);
m_localPhiStack.append(PhiStackEntry(m_currentBlock, phi, operand));
nodeIndex = addToGraph(GetLocal, OpInfo(operand), phi);
m_currentBlock->m_locals[operand].value = nodeIndex;
return nodeIndex;
}
void setLocal(unsigned operand, NodeIndex value)
{
m_currentBlock->m_locals[operand].value = addToGraph(SetLocal, OpInfo(operand), value);
}
// Used in implementing get/set, above, where the operand is an argument.
NodeIndex getArgument(unsigned operand)
{
unsigned argument = operand + m_codeBlock->m_numParameters + RegisterFile::CallFrameHeaderSize;
ASSERT(argument < m_numArguments);
NodeIndex nodeIndex = m_currentBlock->m_arguments[argument].value;
if (nodeIndex != NoNode) {
Node& node = m_graph[nodeIndex];
if (node.op == GetLocal)
return nodeIndex;
ASSERT(node.op == SetLocal);
return node.child1;
}
NodeIndex phi = addToGraph(Phi);
m_argumentPhiStack.append(PhiStackEntry(m_currentBlock, phi, argument));
nodeIndex = addToGraph(GetLocal, OpInfo(operand), phi);
m_currentBlock->m_arguments[argument].value = nodeIndex;
return nodeIndex;
}
void setArgument(int operand, NodeIndex value)
{
unsigned argument = operand + m_codeBlock->m_numParameters + RegisterFile::CallFrameHeaderSize;
ASSERT(argument < m_numArguments);
m_currentBlock->m_arguments[argument].value = addToGraph(SetLocal, OpInfo(operand), value);
}
// Get an operand, and perform a ToInt32/ToNumber conversion on it.
NodeIndex getToInt32(int operand)
{
// Avoid wastefully adding a JSConstant node to the graph, only to
// replace it with a Int32Constant (which is what would happen if
// we called 'toInt32(get(operand))' in this case).
if (operand >= FirstConstantRegisterIndex) {
JSValue v = m_codeBlock->getConstant(operand);
if (v.isInt32())
return getInt32Constant(v.asInt32(), operand - FirstConstantRegisterIndex);
}
return toInt32(get(operand));
}
NodeIndex getToNumber(int operand)
{
// Avoid wastefully adding a JSConstant node to the graph, only to
// replace it with a DoubleConstant (which is what would happen if
// we called 'toNumber(get(operand))' in this case).
if (operand >= FirstConstantRegisterIndex) {
JSValue v = m_codeBlock->getConstant(operand);
if (v.isNumber())
return getDoubleConstant(v.uncheckedGetNumber(), operand - FirstConstantRegisterIndex);
}
return toNumber(get(operand));
}
// Perform an ES5 ToInt32 operation - returns a node of type NodeResultInt32.
NodeIndex toInt32(NodeIndex index)
{
Node& node = m_graph[index];
if (node.hasInt32Result())
return index;
if (node.hasDoubleResult()) {
if (node.op == DoubleConstant)
return getInt32Constant(JSC::toInt32(valueOfDoubleConstant(index)), node.constantNumber());
// 'NumberToInt32(Int32ToNumber(X))' == X, and 'NumberToInt32(UInt32ToNumber(X)) == X'
if (node.op == Int32ToNumber || node.op == UInt32ToNumber)
return node.child1;
// We unique NumberToInt32 nodes in a map to prevent duplicate conversions.
pair<UnaryOpMap::iterator, bool> result = m_numberToInt32Nodes.add(index, NoNode);
// Either we added a new value, or the existing value in the map is non-zero.
ASSERT(result.second == (result.first->second == NoNode));
if (result.second)
result.first->second = addToGraph(NumberToInt32, index);
return result.first->second;
}
// Check for numeric constants boxed as JSValues.
if (node.op == JSConstant) {
JSValue v = valueOfJSConstant(index);
if (v.isInt32())
return getInt32Constant(v.asInt32(), node.constantNumber());
if (v.isNumber())
return getInt32Constant(JSC::toInt32(v.uncheckedGetNumber()), node.constantNumber());
}
return addToGraph(ValueToInt32, index);
}
// Perform an ES5 ToNumber operation - returns a node of type NodeResultDouble.
NodeIndex toNumber(NodeIndex index)
{
Node& node = m_graph[index];
if (node.hasDoubleResult())
return index;
if (node.hasInt32Result()) {
if (node.op == Int32Constant)
return getDoubleConstant(valueOfInt32Constant(index), node.constantNumber());
// We unique Int32ToNumber nodes in a map to prevent duplicate conversions.
pair<UnaryOpMap::iterator, bool> result = m_int32ToNumberNodes.add(index, NoNode);
// Either we added a new value, or the existing value in the map is non-zero.
ASSERT(result.second == (result.first->second == NoNode));
if (result.second)
result.first->second = addToGraph(Int32ToNumber, index);
return result.first->second;
}
if (node.op == JSConstant) {
JSValue v = valueOfJSConstant(index);
if (v.isNumber())
return getDoubleConstant(v.uncheckedGetNumber(), node.constantNumber());
}
return addToGraph(ValueToNumber, index);
}
// Used in implementing get, above, where the operand is a constant.
NodeIndex getInt32Constant(int32_t value, unsigned constant)
{
NodeIndex index = m_constants[constant].asInt32;
if (index != NoNode)
return index;
NodeIndex resultIndex = addToGraph(Int32Constant, OpInfo(constant));
m_graph[resultIndex].setInt32Constant(value);
m_constants[constant].asInt32 = resultIndex;
return resultIndex;
}
NodeIndex getDoubleConstant(double value, unsigned constant)
{
NodeIndex index = m_constants[constant].asNumeric;
if (index != NoNode)
return index;
NodeIndex resultIndex = addToGraph(DoubleConstant, OpInfo(constant));
m_graph[resultIndex].setDoubleConstant(value);
m_constants[constant].asNumeric = resultIndex;
return resultIndex;
}
NodeIndex getJSConstant(unsigned constant)
{
NodeIndex index = m_constants[constant].asJSValue;
if (index != NoNode)
return index;
NodeIndex resultIndex = addToGraph(JSConstant, OpInfo(constant));
m_constants[constant].asJSValue = resultIndex;
return resultIndex;
}
// Helper functions to get/set the this value.
NodeIndex getThis()
{
return getArgument(m_codeBlock->thisRegister());
}
void setThis(NodeIndex value)
{
setArgument(m_codeBlock->thisRegister(), value);
}
// Convenience methods for checking nodes for constants.
bool isInt32Constant(NodeIndex index)
{
return m_graph[index].op == Int32Constant;
}
bool isDoubleConstant(NodeIndex index)
{
return m_graph[index].op == DoubleConstant;
}
bool isJSConstant(NodeIndex index)
{
return m_graph[index].op == JSConstant;
}
// Convenience methods for getting constant values.
int32_t valueOfInt32Constant(NodeIndex index)
{
ASSERT(isInt32Constant(index));
return m_graph[index].int32Constant();
}
double valueOfDoubleConstant(NodeIndex index)
{
ASSERT(isDoubleConstant(index));
return m_graph[index].numericConstant();
}
JSValue valueOfJSConstant(NodeIndex index)
{
ASSERT(isJSConstant(index));
return m_codeBlock->getConstant(FirstConstantRegisterIndex + m_graph[index].constantNumber());
}
// This method returns a JSConstant with the value 'undefined'.
NodeIndex constantUndefined()
{
// Has m_constantUndefined been set up yet?
if (m_constantUndefined == UINT_MAX) {
// Search the constant pool for undefined, if we find it, we can just reuse this!
unsigned numberOfConstants = m_codeBlock->numberOfConstantRegisters();
for (m_constantUndefined = 0; m_constantUndefined < numberOfConstants; ++m_constantUndefined) {
JSValue testMe = m_codeBlock->getConstant(FirstConstantRegisterIndex + m_constantUndefined);
if (testMe.isUndefined())
return getJSConstant(m_constantUndefined);
}
// Add undefined to the CodeBlock's constants, and add a corresponding slot in m_constants.
ASSERT(m_constants.size() == numberOfConstants);
m_codeBlock->addConstant(jsUndefined());
m_constants.append(ConstantRecord());
ASSERT(m_constants.size() == m_codeBlock->numberOfConstantRegisters());
}
// m_constantUndefined must refer to an entry in the CodeBlock's constant pool that has the value 'undefined'.
ASSERT(m_codeBlock->getConstant(FirstConstantRegisterIndex + m_constantUndefined).isUndefined());
return getJSConstant(m_constantUndefined);
}
// This method returns a JSConstant with the value 'null'.
NodeIndex constantNull()
{
// Has m_constantNull been set up yet?
if (m_constantNull == UINT_MAX) {
// Search the constant pool for null, if we find it, we can just reuse this!
unsigned numberOfConstants = m_codeBlock->numberOfConstantRegisters();
for (m_constantNull = 0; m_constantNull < numberOfConstants; ++m_constantNull) {
JSValue testMe = m_codeBlock->getConstant(FirstConstantRegisterIndex + m_constantNull);
if (testMe.isNull())
return getJSConstant(m_constantNull);
}
// Add null to the CodeBlock's constants, and add a corresponding slot in m_constants.
ASSERT(m_constants.size() == numberOfConstants);
m_codeBlock->addConstant(jsNull());
m_constants.append(ConstantRecord());
ASSERT(m_constants.size() == m_codeBlock->numberOfConstantRegisters());
}
// m_constantNull must refer to an entry in the CodeBlock's constant pool that has the value 'null'.
ASSERT(m_codeBlock->getConstant(FirstConstantRegisterIndex + m_constantNull).isNull());
return getJSConstant(m_constantNull);
}
// This method returns a DoubleConstant with the value 1.
NodeIndex one()
{
// Has m_constant1 been set up yet?
if (m_constant1 == UINT_MAX) {
// Search the constant pool for the value 1, if we find it, we can just reuse this!
unsigned numberOfConstants = m_codeBlock->numberOfConstantRegisters();
for (m_constant1 = 0; m_constant1 < numberOfConstants; ++m_constant1) {
JSValue testMe = m_codeBlock->getConstant(FirstConstantRegisterIndex + m_constant1);
if (testMe.isInt32() && testMe.asInt32() == 1)
return getDoubleConstant(1, m_constant1);
}
// Add the value 1 to the CodeBlock's constants, and add a corresponding slot in m_constants.
ASSERT(m_constants.size() == numberOfConstants);
m_codeBlock->addConstant(jsNumber(1));
m_constants.append(ConstantRecord());
ASSERT(m_constants.size() == m_codeBlock->numberOfConstantRegisters());
}
// m_constant1 must refer to an entry in the CodeBlock's constant pool that has the integer value 1.
ASSERT(m_codeBlock->getConstant(FirstConstantRegisterIndex + m_constant1).isInt32());
ASSERT(m_codeBlock->getConstant(FirstConstantRegisterIndex + m_constant1).asInt32() == 1);
return getDoubleConstant(1, m_constant1);
}
// These methods create a node and add it to the graph. If nodes of this type are
// 'mustGenerate' then the node will implicitly be ref'ed to ensure generation.
NodeIndex addToGraph(NodeType op, NodeIndex child1 = NoNode, NodeIndex child2 = NoNode, NodeIndex child3 = NoNode)
{
NodeIndex resultIndex = (NodeIndex)m_graph.size();
m_graph.append(Node(op, m_currentIndex, child1, child2, child3));
if (op & NodeMustGenerate)
m_graph.ref(resultIndex);
return resultIndex;
}
NodeIndex addToGraph(NodeType op, OpInfo info, NodeIndex child1 = NoNode, NodeIndex child2 = NoNode, NodeIndex child3 = NoNode)
{
NodeIndex resultIndex = (NodeIndex)m_graph.size();
m_graph.append(Node(op, m_currentIndex, info, child1, child2, child3));
if (op & NodeMustGenerate)
m_graph.ref(resultIndex);
return resultIndex;
}
NodeIndex addToGraph(NodeType op, OpInfo info1, OpInfo info2, NodeIndex child1 = NoNode, NodeIndex child2 = NoNode, NodeIndex child3 = NoNode)
{
NodeIndex resultIndex = (NodeIndex)m_graph.size();
m_graph.append(Node(op, m_currentIndex, info1, info2, child1, child2, child3));
if (op & NodeMustGenerate)
m_graph.ref(resultIndex);
return resultIndex;
}
void predictArray(NodeIndex nodeIndex)
{
Node* nodePtr = &m_graph[nodeIndex];
if (nodePtr->op == GetLocal)
m_graph.predict(nodePtr->local(), PredictArray);
}
void predictInt32(NodeIndex nodeIndex)
{
Node* nodePtr = &m_graph[nodeIndex];
if (nodePtr->op == ValueToNumber)
nodePtr = &m_graph[nodePtr->child1];
if (nodePtr->op == ValueToInt32)
nodePtr = &m_graph[nodePtr->child1];
if (nodePtr->op == NumberToInt32)
nodePtr = &m_graph[nodePtr->child1];
if (nodePtr->op == GetLocal)
m_graph.predict(nodePtr->local(), PredictInt32);
}
JSGlobalData* m_globalData;
CodeBlock* m_codeBlock;
Graph& m_graph;
// The current block being generated.
BasicBlock* m_currentBlock;
// The bytecode index of the current instruction being generated.
unsigned m_currentIndex;
// Record failures due to unimplemented functionality or regressions.
bool m_parseFailed;
// We use these values during code generation, and to avoid the need for
// special handling we make sure they are available as constants in the
// CodeBlock's constant pool. These variables are initialized to
// UINT_MAX, and lazily updated to hold an index into the CodeBlock's
// constant pool, as necessary.
unsigned m_constantUndefined;
unsigned m_constantNull;
unsigned m_constant1;
// A constant in the constant pool may be represented by more than one
// node in the graph, depending on the context in which it is being used.
struct ConstantRecord {
ConstantRecord()
: asInt32(NoNode)
, asNumeric(NoNode)
, asJSValue(NoNode)
{
}
NodeIndex asInt32;
NodeIndex asNumeric;
NodeIndex asJSValue;
};
// Track the index of the node whose result is the current value for every
// register value in the bytecode - argument, local, and temporary.
Vector<ConstantRecord, 16> m_constants;
// The number of arguments passed to the function.
unsigned m_numArguments;
// The number of locals (vars + temporaries) used in the function.
unsigned m_numLocals;
// The number of registers we need to preserve across BasicBlock boundaries;
// typically equal to the number vars, but we expand this to cover all
// temporaries that persist across blocks (dues to ?:, &&, ||, etc).
unsigned m_preservedVars;
struct PhiStackEntry {
PhiStackEntry(BasicBlock* block, NodeIndex phi, unsigned varNo)
: m_block(block)
, m_phi(phi)
, m_varNo(varNo)
{
}
BasicBlock* m_block;
NodeIndex m_phi;
unsigned m_varNo;
};
Vector<PhiStackEntry, 16> m_argumentPhiStack;
Vector<PhiStackEntry, 16> m_localPhiStack;
// These maps are used to unique ToNumber and ToInt32 operations.
typedef HashMap<NodeIndex, NodeIndex> UnaryOpMap;
UnaryOpMap m_int32ToNumberNodes;
UnaryOpMap m_numberToInt32Nodes;
};
#define NEXT_OPCODE(name) \
m_currentIndex += OPCODE_LENGTH(name); \
continue
#define LAST_OPCODE(name) \
m_currentIndex += OPCODE_LENGTH(name); \
return !m_parseFailed
bool ByteCodeParser::parseBlock(unsigned limit)
{
// No need to reset state initially, since it has been set by the constructor.
if (m_currentIndex) {
for (unsigned i = 0; i < m_constants.size(); ++i)
m_constants[i] = ConstantRecord();
}
AliasTracker aliases(m_graph);
Interpreter* interpreter = m_globalData->interpreter;
Instruction* instructionsBegin = m_codeBlock->instructions().begin();
while (true) {
// Don't extend over jump destinations.
if (m_currentIndex == limit) {
addToGraph(Jump, OpInfo(m_currentIndex));
return !m_parseFailed;
}
// Switch on the current bytecode opcode.
Instruction* currentInstruction = instructionsBegin + m_currentIndex;
switch (interpreter->getOpcodeID(currentInstruction->u.opcode)) {
// === Function entry opcodes ===
case op_enter:
// Initialize all locals to undefined.
for (int i = 0; i < m_codeBlock->m_numVars; ++i)
set(i, constantUndefined());
NEXT_OPCODE(op_enter);
case op_convert_this: {
NodeIndex op1 = getThis();
setThis(addToGraph(ConvertThis, op1));
NEXT_OPCODE(op_convert_this);
}
// === Bitwise operations ===
case op_bitand: {
NodeIndex op1 = getToInt32(currentInstruction[2].u.operand);
NodeIndex op2 = getToInt32(currentInstruction[3].u.operand);
predictInt32(op1);
predictInt32(op2);
set(currentInstruction[1].u.operand, addToGraph(BitAnd, op1, op2), PredictInt32);
NEXT_OPCODE(op_bitand);
}
case op_bitor: {
NodeIndex op1 = getToInt32(currentInstruction[2].u.operand);
NodeIndex op2 = getToInt32(currentInstruction[3].u.operand);
predictInt32(op1);
predictInt32(op2);
set(currentInstruction[1].u.operand, addToGraph(BitOr, op1, op2), PredictInt32);
NEXT_OPCODE(op_bitor);
}
case op_bitxor: {
NodeIndex op1 = getToInt32(currentInstruction[2].u.operand);
NodeIndex op2 = getToInt32(currentInstruction[3].u.operand);
predictInt32(op1);
predictInt32(op2);
set(currentInstruction[1].u.operand, addToGraph(BitXor, op1, op2), PredictInt32);
NEXT_OPCODE(op_bitxor);
}
case op_rshift: {
NodeIndex op1 = getToInt32(currentInstruction[2].u.operand);
NodeIndex op2 = getToInt32(currentInstruction[3].u.operand);
predictInt32(op1);
predictInt32(op2);
NodeIndex result;
// Optimize out shifts by zero.
if (isInt32Constant(op2) && !(valueOfInt32Constant(op2) & 0x1f))
result = op1;
else
result = addToGraph(BitRShift, op1, op2);
set(currentInstruction[1].u.operand, result, PredictInt32);
NEXT_OPCODE(op_rshift);
}
case op_lshift: {
NodeIndex op1 = getToInt32(currentInstruction[2].u.operand);
NodeIndex op2 = getToInt32(currentInstruction[3].u.operand);
predictInt32(op1);
predictInt32(op2);
NodeIndex result;
// Optimize out shifts by zero.
if (isInt32Constant(op2) && !(valueOfInt32Constant(op2) & 0x1f))
result = op1;
else
result = addToGraph(BitLShift, op1, op2);
set(currentInstruction[1].u.operand, result, PredictInt32);
NEXT_OPCODE(op_lshift);
}
case op_urshift: {
NodeIndex op1 = getToInt32(currentInstruction[2].u.operand);
NodeIndex op2 = getToInt32(currentInstruction[3].u.operand);
predictInt32(op1);
predictInt32(op2);
NodeIndex result;
// The result of a zero-extending right shift is treated as an unsigned value.
// This means that if the top bit is set, the result is not in the int32 range,
// and as such must be stored as a double. If the shift amount is a constant,
// we may be able to optimize.
if (isInt32Constant(op2)) {
// If we know we are shifting by a non-zero amount, then since the operation
// zero fills we know the top bit of the result must be zero, and as such the
// result must be within the int32 range. Conversely, if this is a shift by
// zero, then the result may be changed by the conversion to unsigned, but it
// is not necessary to perform the shift!
if (valueOfInt32Constant(op2) & 0x1f)
result = addToGraph(BitURShift, op1, op2);
else
result = addToGraph(UInt32ToNumber, op1);
} else {
// Cannot optimize at this stage; shift & potentially rebox as a double.
result = addToGraph(BitURShift, op1, op2);
result = addToGraph(UInt32ToNumber, result);
}
set(currentInstruction[1].u.operand, result, PredictInt32);
NEXT_OPCODE(op_urshift);
}
// === Increment/Decrement opcodes ===
case op_pre_inc: {
unsigned srcDst = currentInstruction[1].u.operand;
NodeIndex op = getToNumber(srcDst);
predictInt32(op);
set(srcDst, addToGraph(ArithAdd, op, one()));
NEXT_OPCODE(op_pre_inc);
}
case op_post_inc: {
unsigned result = currentInstruction[1].u.operand;
unsigned srcDst = currentInstruction[2].u.operand;
NodeIndex op = getToNumber(srcDst);
predictInt32(op);
set(result, op);
set(srcDst, addToGraph(ArithAdd, op, one()));
NEXT_OPCODE(op_post_inc);
}
case op_pre_dec: {
unsigned srcDst = currentInstruction[1].u.operand;
NodeIndex op = getToNumber(srcDst);
predictInt32(op);
set(srcDst, addToGraph(ArithSub, op, one()));
NEXT_OPCODE(op_pre_dec);
}
case op_post_dec: {
unsigned result = currentInstruction[1].u.operand;
unsigned srcDst = currentInstruction[2].u.operand;
NodeIndex op = getToNumber(srcDst);
predictInt32(op);
set(result, op);
set(srcDst, addToGraph(ArithSub, op, one()));
NEXT_OPCODE(op_post_dec);
}
// === Arithmetic operations ===
case op_add: {
ARITHMETIC_OP();
NodeIndex op1 = get(currentInstruction[2].u.operand);
NodeIndex op2 = get(currentInstruction[3].u.operand);
// If both operands can statically be determined to the numbers, then this is an arithmetic add.
// Otherwise, we must assume this may be performing a concatenation to a string.
if (m_graph[op1].hasNumericResult() && m_graph[op2].hasNumericResult())
set(currentInstruction[1].u.operand, addToGraph(ArithAdd, toNumber(op1), toNumber(op2)));
else
set(currentInstruction[1].u.operand, addToGraph(ValueAdd, op1, op2));
NEXT_OPCODE(op_add);
}
case op_sub: {
ARITHMETIC_OP();
NodeIndex op1 = getToNumber(currentInstruction[2].u.operand);
NodeIndex op2 = getToNumber(currentInstruction[3].u.operand);
set(currentInstruction[1].u.operand, addToGraph(ArithSub, op1, op2));
NEXT_OPCODE(op_sub);
}
case op_mul: {
ARITHMETIC_OP();
NodeIndex op1 = getToNumber(currentInstruction[2].u.operand);
NodeIndex op2 = getToNumber(currentInstruction[3].u.operand);
set(currentInstruction[1].u.operand, addToGraph(ArithMul, op1, op2));
NEXT_OPCODE(op_mul);
}
case op_mod: {
ARITHMETIC_OP();
NodeIndex op1 = getToNumber(currentInstruction[2].u.operand);
NodeIndex op2 = getToNumber(currentInstruction[3].u.operand);
set(currentInstruction[1].u.operand, addToGraph(ArithMod, op1, op2));
NEXT_OPCODE(op_mod);
}
case op_div: {
ARITHMETIC_OP();
NodeIndex op1 = getToNumber(currentInstruction[2].u.operand);
NodeIndex op2 = getToNumber(currentInstruction[3].u.operand);
set(currentInstruction[1].u.operand, addToGraph(ArithDiv, op1, op2));
NEXT_OPCODE(op_div);
}
// === Misc operations ===
case op_mov: {
NodeIndex op = get(currentInstruction[2].u.operand);
set(currentInstruction[1].u.operand, op);
NEXT_OPCODE(op_mov);
}
case op_not: {
ARITHMETIC_OP();
NodeIndex value = get(currentInstruction[2].u.operand);
set(currentInstruction[1].u.operand, addToGraph(LogicalNot, value));
NEXT_OPCODE(op_not);
}
case op_less: {
ARITHMETIC_OP();
NodeIndex op1 = get(currentInstruction[2].u.operand);
NodeIndex op2 = get(currentInstruction[3].u.operand);
set(currentInstruction[1].u.operand, addToGraph(CompareLess, op1, op2));
NEXT_OPCODE(op_less);
}
case op_lesseq: {
ARITHMETIC_OP();
NodeIndex op1 = get(currentInstruction[2].u.operand);
NodeIndex op2 = get(currentInstruction[3].u.operand);
set(currentInstruction[1].u.operand, addToGraph(CompareLessEq, op1, op2));
NEXT_OPCODE(op_lesseq);
}
case op_eq: {
ARITHMETIC_OP();
NodeIndex op1 = get(currentInstruction[2].u.operand);
NodeIndex op2 = get(currentInstruction[3].u.operand);
set(currentInstruction[1].u.operand, addToGraph(CompareEq, op1, op2));
NEXT_OPCODE(op_eq);
}
case op_eq_null: {
ARITHMETIC_OP();
NodeIndex value = get(currentInstruction[2].u.operand);
set(currentInstruction[1].u.operand, addToGraph(CompareEq, value, constantNull()));
NEXT_OPCODE(op_eq_null);
}
case op_stricteq: {
ARITHMETIC_OP();
NodeIndex op1 = get(currentInstruction[2].u.operand);
NodeIndex op2 = get(currentInstruction[3].u.operand);
set(currentInstruction[1].u.operand, addToGraph(CompareStrictEq, op1, op2));
NEXT_OPCODE(op_stricteq);
}
case op_neq: {
ARITHMETIC_OP();
NodeIndex op1 = get(currentInstruction[2].u.operand);
NodeIndex op2 = get(currentInstruction[3].u.operand);
set(currentInstruction[1].u.operand, addToGraph(LogicalNot, addToGraph(CompareEq, op1, op2)));
NEXT_OPCODE(op_neq);
}
case op_neq_null: {
ARITHMETIC_OP();
NodeIndex value = get(currentInstruction[2].u.operand);
set(currentInstruction[1].u.operand, addToGraph(LogicalNot, addToGraph(CompareEq, value, constantNull())));
NEXT_OPCODE(op_neq_null);
}
case op_nstricteq: {
ARITHMETIC_OP();
NodeIndex op1 = get(currentInstruction[2].u.operand);
NodeIndex op2 = get(currentInstruction[3].u.operand);
set(currentInstruction[1].u.operand, addToGraph(LogicalNot, addToGraph(CompareStrictEq, op1, op2)));
NEXT_OPCODE(op_nstricteq);
}
// === Property access operations ===
case op_get_by_val: {
NodeIndex base = get(currentInstruction[2].u.operand);
NodeIndex property = get(currentInstruction[3].u.operand);
predictArray(base);
predictInt32(property);
NodeIndex getByVal = addToGraph(GetByVal, base, property, aliases.lookupGetByVal(base, property));
set(currentInstruction[1].u.operand, getByVal);
aliases.recordGetByVal(getByVal);
NEXT_OPCODE(op_get_by_val);
}
case op_put_by_val: {
NodeIndex base = get(currentInstruction[1].u.operand);
NodeIndex property = get(currentInstruction[2].u.operand);
NodeIndex value = get(currentInstruction[3].u.operand);
predictArray(base);
predictInt32(property);
NodeIndex aliasedGet = aliases.lookupGetByVal(base, property);
NodeIndex putByVal = addToGraph(aliasedGet != NoNode ? PutByValAlias : PutByVal, base, property, value);
aliases.recordPutByVal(putByVal);
NEXT_OPCODE(op_put_by_val);
}
case op_get_by_id: {
NodeIndex base = get(currentInstruction[2].u.operand);
unsigned identifier = currentInstruction[3].u.operand;
NodeIndex getById = addToGraph(GetById, OpInfo(identifier), base);
set(currentInstruction[1].u.operand, getById);
aliases.recordGetById(getById);
NEXT_OPCODE(op_get_by_id);
}
case op_put_by_id: {
NodeIndex value = get(currentInstruction[3].u.operand);
NodeIndex base = get(currentInstruction[1].u.operand);
unsigned identifier = currentInstruction[2].u.operand;
bool direct = currentInstruction[8].u.operand;
if (direct) {
NodeIndex putByIdDirect = addToGraph(PutByIdDirect, OpInfo(identifier), base, value);
aliases.recordPutByIdDirect(putByIdDirect);
} else {
NodeIndex putById = addToGraph(PutById, OpInfo(identifier), base, value);
aliases.recordPutById(putById);
}
NEXT_OPCODE(op_put_by_id);
}
case op_get_global_var: {
NodeIndex getGlobalVar = addToGraph(GetGlobalVar, OpInfo(currentInstruction[2].u.operand));
set(currentInstruction[1].u.operand, getGlobalVar);
NEXT_OPCODE(op_get_global_var);
}
case op_put_global_var: {
NodeIndex value = get(currentInstruction[2].u.operand);
addToGraph(PutGlobalVar, OpInfo(currentInstruction[1].u.operand), value);
NEXT_OPCODE(op_put_global_var);
}
// === Block terminators. ===
case op_jmp: {
unsigned relativeOffset = currentInstruction[1].u.operand;
addToGraph(Jump, OpInfo(m_currentIndex + relativeOffset));
LAST_OPCODE(op_jmp);
}
case op_loop: {
unsigned relativeOffset = currentInstruction[1].u.operand;
addToGraph(Jump, OpInfo(m_currentIndex + relativeOffset));
LAST_OPCODE(op_loop);
}
case op_jtrue: {
unsigned relativeOffset = currentInstruction[2].u.operand;
NodeIndex condition = get(currentInstruction[1].u.operand);
addToGraph(Branch, OpInfo(m_currentIndex + relativeOffset), OpInfo(m_currentIndex + OPCODE_LENGTH(op_jtrue)), condition);
LAST_OPCODE(op_jtrue);
}
case op_jfalse: {
unsigned relativeOffset = currentInstruction[2].u.operand;
NodeIndex condition = get(currentInstruction[1].u.operand);
addToGraph(Branch, OpInfo(m_currentIndex + OPCODE_LENGTH(op_jfalse)), OpInfo(m_currentIndex + relativeOffset), condition);
LAST_OPCODE(op_jfalse);
}
case op_loop_if_true: {
unsigned relativeOffset = currentInstruction[2].u.operand;
NodeIndex condition = get(currentInstruction[1].u.operand);
addToGraph(Branch, OpInfo(m_currentIndex + relativeOffset), OpInfo(m_currentIndex + OPCODE_LENGTH(op_loop_if_true)), condition);
LAST_OPCODE(op_loop_if_true);
}
case op_loop_if_false: {
unsigned relativeOffset = currentInstruction[2].u.operand;
NodeIndex condition = get(currentInstruction[1].u.operand);
addToGraph(Branch, OpInfo(m_currentIndex + OPCODE_LENGTH(op_loop_if_false)), OpInfo(m_currentIndex + relativeOffset), condition);
LAST_OPCODE(op_loop_if_false);
}
case op_jeq_null: {
unsigned relativeOffset = currentInstruction[2].u.operand;
NodeIndex value = get(currentInstruction[1].u.operand);
NodeIndex condition = addToGraph(CompareEq, value, constantNull());
addToGraph(Branch, OpInfo(m_currentIndex + relativeOffset), OpInfo(m_currentIndex + OPCODE_LENGTH(op_jeq_null)), condition);
LAST_OPCODE(op_jeq_null);
}
case op_jneq_null: {
unsigned relativeOffset = currentInstruction[2].u.operand;
NodeIndex value = get(currentInstruction[1].u.operand);
NodeIndex condition = addToGraph(CompareEq, value, constantNull());
addToGraph(Branch, OpInfo(m_currentIndex + OPCODE_LENGTH(op_jneq_null)), OpInfo(m_currentIndex + relativeOffset), condition);
LAST_OPCODE(op_jneq_null);
}
case op_jnless: {
unsigned relativeOffset = currentInstruction[3].u.operand;
NodeIndex op1 = get(currentInstruction[1].u.operand);
NodeIndex op2 = get(currentInstruction[2].u.operand);
NodeIndex condition = addToGraph(CompareLess, op1, op2);
addToGraph(Branch, OpInfo(m_currentIndex + OPCODE_LENGTH(op_jnless)), OpInfo(m_currentIndex + relativeOffset), condition);
LAST_OPCODE(op_jnless);
}
case op_jnlesseq: {
unsigned relativeOffset = currentInstruction[3].u.operand;
NodeIndex op1 = get(currentInstruction[1].u.operand);
NodeIndex op2 = get(currentInstruction[2].u.operand);
NodeIndex condition = addToGraph(CompareLessEq, op1, op2);
addToGraph(Branch, OpInfo(m_currentIndex + OPCODE_LENGTH(op_jnlesseq)), OpInfo(m_currentIndex + relativeOffset), condition);
LAST_OPCODE(op_jnlesseq);
}
case op_jless: {
unsigned relativeOffset = currentInstruction[3].u.operand;
NodeIndex op1 = get(currentInstruction[1].u.operand);
NodeIndex op2 = get(currentInstruction[2].u.operand);
NodeIndex condition = addToGraph(CompareLess, op1, op2);
addToGraph(Branch, OpInfo(m_currentIndex + relativeOffset), OpInfo(m_currentIndex + OPCODE_LENGTH(op_jless)), condition);
LAST_OPCODE(op_jless);
}
case op_jlesseq: {
unsigned relativeOffset = currentInstruction[3].u.operand;
NodeIndex op1 = get(currentInstruction[1].u.operand);
NodeIndex op2 = get(currentInstruction[2].u.operand);
NodeIndex condition = addToGraph(CompareLessEq, op1, op2);
addToGraph(Branch, OpInfo(m_currentIndex + relativeOffset), OpInfo(m_currentIndex + OPCODE_LENGTH(op_jlesseq)), condition);
LAST_OPCODE(op_jlesseq);
}
case op_loop_if_less: {
unsigned relativeOffset = currentInstruction[3].u.operand;
NodeIndex op1 = get(currentInstruction[1].u.operand);
NodeIndex op2 = get(currentInstruction[2].u.operand);
NodeIndex condition = addToGraph(CompareLess, op1, op2);
addToGraph(Branch, OpInfo(m_currentIndex + relativeOffset), OpInfo(m_currentIndex + OPCODE_LENGTH(op_loop_if_less)), condition);
LAST_OPCODE(op_loop_if_less);
}
case op_loop_if_lesseq: {
unsigned relativeOffset = currentInstruction[3].u.operand;
NodeIndex op1 = get(currentInstruction[1].u.operand);
NodeIndex op2 = get(currentInstruction[2].u.operand);
NodeIndex condition = addToGraph(CompareLessEq, op1, op2);
addToGraph(Branch, OpInfo(m_currentIndex + relativeOffset), OpInfo(m_currentIndex + OPCODE_LENGTH(op_loop_if_lesseq)), condition);
LAST_OPCODE(op_loop_if_lesseq);
}
case op_ret: {
addToGraph(Return, get(currentInstruction[1].u.operand));
LAST_OPCODE(op_ret);
}
default:
// Parse failed!
return false;
}
}
}
template<ByteCodeParser::PhiStackType stackType>
void ByteCodeParser::processPhiStack()
{
Vector<PhiStackEntry, 16>& phiStack = (stackType == ArgumentPhiStack) ? m_argumentPhiStack : m_localPhiStack;
while (!phiStack.isEmpty()) {
PhiStackEntry entry = phiStack.last();
phiStack.removeLast();
Node& phiNode = m_graph[entry.m_phi];
PredecessorList& predecessors = entry.m_block->m_predecessors;
unsigned varNo = entry.m_varNo;
for (size_t i = 0; i < predecessors.size(); ++i) {
BasicBlock* predecessorBlock = m_graph.m_blocks[predecessors[i]].get();
VariableRecord& var = (stackType == ArgumentPhiStack) ? predecessorBlock->m_arguments[varNo] : predecessorBlock->m_locals[varNo];
NodeIndex valueInPredecessor = var.value;
if (valueInPredecessor == NoNode) {
valueInPredecessor = addToGraph(Phi);
var.value = valueInPredecessor;
phiStack.append(PhiStackEntry(predecessorBlock, valueInPredecessor, varNo));
} else if (m_graph[valueInPredecessor].op == GetLocal)
valueInPredecessor = m_graph[valueInPredecessor].child1;
ASSERT(m_graph[valueInPredecessor].op == SetLocal || m_graph[valueInPredecessor].op == Phi);
if (phiNode.refCount())
m_graph.ref(valueInPredecessor);
if (phiNode.child1 == NoNode) {
phiNode.child1 = valueInPredecessor;
continue;
}
if (phiNode.child2 == NoNode) {
phiNode.child2 = valueInPredecessor;
continue;
}
if (phiNode.child3 == NoNode) {
phiNode.child3 = valueInPredecessor;
continue;
}
NodeIndex newPhi = addToGraph(Phi);
Node& newPhiNode = m_graph[newPhi];
if (phiNode.refCount())
m_graph.ref(newPhi);
newPhiNode.child1 = phiNode.child1;
newPhiNode.child2 = phiNode.child2;
newPhiNode.child3 = phiNode.child3;
phiNode.child1 = newPhi;
phiNode.child1 = valueInPredecessor;
phiNode.child3 = NoNode;
}
}
}
void ByteCodeParser::setupPredecessors()
{
for (BlockIndex index = 0; index < m_graph.m_blocks.size(); ++index) {
BasicBlock* block = m_graph.m_blocks[index].get();
ASSERT(block->end != NoNode);
Node& node = m_graph[block->end - 1];
ASSERT(node.isTerminal());
if (node.isJump())
m_graph.blockForBytecodeOffset(node.takenBytecodeOffset()).m_predecessors.append(index);
else if (node.isBranch()) {
m_graph.blockForBytecodeOffset(node.takenBytecodeOffset()).m_predecessors.append(index);
m_graph.blockForBytecodeOffset(node.notTakenBytecodeOffset()).m_predecessors.append(index);
}
}
}
void ByteCodeParser::allocateVirtualRegisters()
{
ScoreBoard scoreBoard(m_graph, m_preservedVars);
unsigned sizeExcludingPhiNodes = m_graph.m_blocks.last()->end;
for (size_t i = 0; i < sizeExcludingPhiNodes; ++i) {
Node& node = m_graph[i];
if (!node.shouldGenerate())
continue;
// GetLocal nodes are effectively phi nodes in the graph, referencing
// results from prior blocks.
if (node.op != GetLocal) {
// First, call use on all of the current node's children, then
// allocate a VirtualRegister for this node. We do so in this
// order so that if a child is on its last use, and a
// VirtualRegister is freed, then it may be reused for node.
scoreBoard.use(node.child1);
scoreBoard.use(node.child2);
scoreBoard.use(node.child3);
}
if (!node.hasResult())
continue;
node.setVirtualRegister(scoreBoard.allocate());
// 'mustGenerate' nodes have their useCount artificially elevated,
// call use now to account for this.
if (node.mustGenerate())
scoreBoard.use(i);
}
// 'm_numCalleeRegisters' is the number of locals and temporaries allocated
// for the function (and checked for on entry). Since we perform a new and
// different allocation of temporaries, more registers may now be required.
unsigned calleeRegisters = scoreBoard.allocatedCount() + m_preservedVars;
if ((unsigned)m_codeBlock->m_numCalleeRegisters < calleeRegisters)
m_codeBlock->m_numCalleeRegisters = calleeRegisters;
}
bool ByteCodeParser::parse()
{
// Set during construction.
ASSERT(!m_currentIndex);
for (unsigned jumpTargetIndex = 0; jumpTargetIndex <= m_codeBlock->numberOfJumpTargets(); ++jumpTargetIndex) {
// The maximum bytecode offset to go into the current basicblock is either the next jump target, or the end of the instructions.
unsigned limit = jumpTargetIndex < m_codeBlock->numberOfJumpTargets() ? m_codeBlock->jumpTarget(jumpTargetIndex) : m_codeBlock->instructions().size();
ASSERT(m_currentIndex < limit);
// Loop until we reach the current limit (i.e. next jump target).
do {
OwnPtr<BasicBlock> block = adoptPtr(new BasicBlock(m_currentIndex, m_graph.size(), m_numArguments, m_numLocals));
m_currentBlock = block.get();
m_graph.m_blocks.append(block.release());
if (!parseBlock(limit))
return false;
// We should not have gone beyond the limit.
ASSERT(m_currentIndex <= limit);
m_currentBlock->end = m_graph.size();
} while (m_currentIndex < limit);
}
// Should have reached the end of the instructions.
ASSERT(m_currentIndex == m_codeBlock->instructions().size());
setupPredecessors();
processPhiStack<LocalPhiStack>();
processPhiStack<ArgumentPhiStack>();
allocateVirtualRegisters();
#if DFG_DEBUG_VERBOSE
m_graph.dump(m_codeBlock);
#endif
return true;
}
bool parse(Graph& graph, JSGlobalData* globalData, CodeBlock* codeBlock)
{
#if DFG_DEBUG_LOCAL_DISBALE
UNUSED_PARAM(graph);
UNUSED_PARAM(globalData);
UNUSED_PARAM(codeBlock);
return false;
#else
return ByteCodeParser(globalData, codeBlock, graph).parse();
#endif
}
} } // namespace JSC::DFG
#endif
|