1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 721 722 723 724 725 726 727 728 729 730 731 732 733 734 735 736 737 738 739 740 741 742 743 744 745 746 747 748 749 750 751 752 753 754 755 756 757 758 759 760 761 762 763 764 765 766 767 768 769 770 771 772 773 774 775 776 777 778 779 780 781 782 783 784 785 786 787 788 789 790 791 792 793 794 795 796 797 798 799 800 801 802 803 804 805 806 807 808 809 810 811 812 813 814 815 816 817 818 819 820 821 822 823 824 825 826 827 828 829 830 831 832 833 834 835 836 837 838 839 840 841 842 843 844 845 846 847 848 849 850 851 852 853 854 855 856 857 858 859 860 861 862 863 864 865 866 867 868 869 870 871 872 873 874 875 876 877 878 879 880 881 882 883 884 885 886 887 888 889 890 891 892 893 894 895 896 897 898 899 900 901 902 903 904 905 906 907 908 909 910 911 912 913 914 915 916 917 918 919 920 921 922 923 924 925 926 927 928 929 930 931 932 933 934 935 936 937 938 939 940 941 942 943 944 945 946 947 948 949 950 951 952 953 954 955 956 957
|
/*
* Copyright (C) 2011 Apple Inc. All rights reserved.
*
* Redistribution and use in source and binary forms, with or without
* modification, are permitted provided that the following conditions
* are met:
* 1. Redistributions of source code must retain the above copyright
* notice, this list of conditions and the following disclaimer.
* 2. Redistributions in binary form must reproduce the above copyright
* notice, this list of conditions and the following disclaimer in the
* documentation and/or other materials provided with the distribution.
*
* THIS SOFTWARE IS PROVIDED BY APPLE INC. ``AS IS'' AND ANY
* EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
* IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR
* PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL APPLE INC. OR
* CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL,
* EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO,
* PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR
* PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY
* OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT
* (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE
* OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
*/
#ifndef DFGJITCodeGenerator_h
#define DFGJITCodeGenerator_h
#if ENABLE(DFG_JIT)
#include "CodeBlock.h"
#include <dfg/DFGGenerationInfo.h>
#include <dfg/DFGGraph.h>
#include <dfg/DFGJITCompiler.h>
#include <dfg/DFGOperations.h>
#include <dfg/DFGRegisterBank.h>
namespace JSC { namespace DFG {
class SpeculateIntegerOperand;
class SpeculateStrictInt32Operand;
class SpeculateCellOperand;
// === JITCodeGenerator ===
//
// This class provides common infrastructure used by the speculative &
// non-speculative JITs. Provides common mechanisms for virtual and
// physical register management, calls out from JIT code to helper
// functions, etc.
class JITCodeGenerator {
protected:
typedef MacroAssembler::TrustedImm32 TrustedImm32;
typedef MacroAssembler::Imm32 Imm32;
// These constants are used to set priorities for spill order for
// the register allocator.
enum SpillOrder {
SpillOrderConstant = 1, // no spill, and cheap fill
SpillOrderSpilled = 2, // no spill
SpillOrderJS = 4, // needs spill
SpillOrderCell = 4, // needs spill
SpillOrderInteger = 5, // needs spill and box
SpillOrderDouble = 6, // needs spill and convert
};
public:
GPRReg fillInteger(NodeIndex, DataFormat& returnFormat);
FPRReg fillDouble(NodeIndex);
GPRReg fillJSValue(NodeIndex);
// lock and unlock GPR & FPR registers.
void lock(GPRReg reg)
{
m_gprs.lock(reg);
}
void lock(FPRReg reg)
{
m_fprs.lock(reg);
}
void unlock(GPRReg reg)
{
m_gprs.unlock(reg);
}
void unlock(FPRReg reg)
{
m_fprs.unlock(reg);
}
// Used to check whether a child node is on its last use,
// and its machine registers may be reused.
bool canReuse(NodeIndex nodeIndex)
{
VirtualRegister virtualRegister = m_jit.graph()[nodeIndex].virtualRegister();
GenerationInfo& info = m_generationInfo[virtualRegister];
return info.canReuse();
}
GPRReg reuse(GPRReg reg)
{
m_gprs.lock(reg);
return reg;
}
FPRReg reuse(FPRReg reg)
{
m_fprs.lock(reg);
return reg;
}
// Allocate a gpr/fpr.
GPRReg allocate()
{
VirtualRegister spillMe;
GPRReg gpr = m_gprs.allocate(spillMe);
if (spillMe != InvalidVirtualRegister)
spill(spillMe);
return gpr;
}
FPRReg fprAllocate()
{
VirtualRegister spillMe;
FPRReg fpr = m_fprs.allocate(spillMe);
if (spillMe != InvalidVirtualRegister)
spill(spillMe);
return fpr;
}
// Check whether a VirtualRegsiter is currently in a machine register.
// We use this when filling operands to fill those that are already in
// machine registers first (by locking VirtualRegsiters that are already
// in machine register before filling those that are not we attempt to
// avoid spilling values we will need immediately).
bool isFilled(NodeIndex nodeIndex)
{
VirtualRegister virtualRegister = m_jit.graph()[nodeIndex].virtualRegister();
GenerationInfo& info = m_generationInfo[virtualRegister];
return info.registerFormat() != DataFormatNone;
}
bool isFilledDouble(NodeIndex nodeIndex)
{
VirtualRegister virtualRegister = m_jit.graph()[nodeIndex].virtualRegister();
GenerationInfo& info = m_generationInfo[virtualRegister];
return info.registerFormat() == DataFormatDouble;
}
protected:
JITCodeGenerator(JITCompiler& jit, bool isSpeculative)
: m_jit(jit)
, m_isSpeculative(isSpeculative)
, m_compileIndex(0)
, m_generationInfo(m_jit.codeBlock()->m_numCalleeRegisters)
, m_blockHeads(jit.graph().m_blocks.size())
{
}
// These methods convert between doubles, and doubles boxed and JSValues.
GPRReg boxDouble(FPRReg fpr, GPRReg gpr)
{
m_jit.moveDoubleToPtr(fpr, gpr);
m_jit.subPtr(GPRInfo::tagTypeNumberRegister, gpr);
return gpr;
}
FPRReg unboxDouble(GPRReg gpr, FPRReg fpr)
{
m_jit.addPtr(GPRInfo::tagTypeNumberRegister, gpr);
m_jit.movePtrToDouble(gpr, fpr);
return fpr;
}
GPRReg boxDouble(FPRReg fpr)
{
return boxDouble(fpr, allocate());
}
FPRReg unboxDouble(GPRReg gpr)
{
return unboxDouble(gpr, fprAllocate());
}
// Called on an operand once it has been consumed by a parent node.
void use(NodeIndex nodeIndex)
{
VirtualRegister virtualRegister = m_jit.graph()[nodeIndex].virtualRegister();
GenerationInfo& info = m_generationInfo[virtualRegister];
// use() returns true when the value becomes dead, and any
// associated resources may be freed.
if (!info.use())
return;
// Release the associated machine registers.
DataFormat registerFormat = info.registerFormat();
if (registerFormat == DataFormatDouble)
m_fprs.release(info.fpr());
else if (registerFormat != DataFormatNone)
m_gprs.release(info.gpr());
}
// Spill a VirtualRegister to the RegisterFile.
void spill(VirtualRegister spillMe)
{
GenerationInfo& info = m_generationInfo[spillMe];
// Check the GenerationInfo to see if this value need writing
// to the RegisterFile - if not, mark it as spilled & return.
if (!info.needsSpill()) {
info.setSpilled();
return;
}
DataFormat spillFormat = info.registerFormat();
if (spillFormat == DataFormatDouble) {
// All values are spilled as JSValues, so box the double via a temporary gpr.
GPRReg gpr = boxDouble(info.fpr());
m_jit.storePtr(gpr, JITCompiler::addressFor(spillMe));
unlock(gpr);
info.spill(DataFormatJSDouble);
return;
}
// The following code handles JSValues, int32s, and cells.
ASSERT(spillFormat == DataFormatInteger || spillFormat == DataFormatCell || spillFormat & DataFormatJS);
GPRReg reg = info.gpr();
// We need to box int32 and cell values ...
// but on JSVALUE64 boxing a cell is a no-op!
if (spillFormat == DataFormatInteger)
m_jit.orPtr(GPRInfo::tagTypeNumberRegister, reg);
// Spill the value, and record it as spilled in its boxed form.
m_jit.storePtr(reg, JITCompiler::addressFor(spillMe));
info.spill((DataFormat)(spillFormat | DataFormatJS));
}
// Checks/accessors for constant values.
bool isConstant(NodeIndex nodeIndex) { return m_jit.isConstant(nodeIndex); }
bool isInt32Constant(NodeIndex nodeIndex) { return m_jit.isInt32Constant(nodeIndex); }
bool isDoubleConstant(NodeIndex nodeIndex) { return m_jit.isDoubleConstant(nodeIndex); }
bool isJSConstant(NodeIndex nodeIndex) { return m_jit.isJSConstant(nodeIndex); }
int32_t valueOfInt32Constant(NodeIndex nodeIndex) { return m_jit.valueOfInt32Constant(nodeIndex); }
double valueOfDoubleConstant(NodeIndex nodeIndex) { return m_jit.valueOfDoubleConstant(nodeIndex); }
JSValue valueOfJSConstant(NodeIndex nodeIndex) { return m_jit.valueOfJSConstant(nodeIndex); }
Identifier* identifier(unsigned index)
{
return &m_jit.codeBlock()->identifier(index);
}
// Spill all VirtualRegisters back to the RegisterFile.
void flushRegisters()
{
for (gpr_iterator iter = m_gprs.begin(); iter != m_gprs.end(); ++iter) {
if (iter.name() != InvalidVirtualRegister) {
spill(iter.name());
iter.release();
}
}
for (fpr_iterator iter = m_fprs.begin(); iter != m_fprs.end(); ++iter) {
if (iter.name() != InvalidVirtualRegister) {
spill(iter.name());
iter.release();
}
}
}
#ifndef NDEBUG
// Used to ASSERT flushRegisters() has been called prior to
// calling out from JIT code to a C helper function.
bool isFlushed()
{
for (gpr_iterator iter = m_gprs.begin(); iter != m_gprs.end(); ++iter) {
if (iter.name() != InvalidVirtualRegister)
return false;
}
for (fpr_iterator iter = m_fprs.begin(); iter != m_fprs.end(); ++iter) {
if (iter.name() != InvalidVirtualRegister)
return false;
}
return true;
}
#endif
// Get the JSValue representation of a constant.
JSValue constantAsJSValue(NodeIndex nodeIndex)
{
Node& node = m_jit.graph()[nodeIndex];
if (isInt32Constant(nodeIndex))
return jsNumber(node.int32Constant());
if (isDoubleConstant(nodeIndex))
return JSValue(JSValue::EncodeAsDouble, node.numericConstant());
ASSERT(isJSConstant(nodeIndex));
return valueOfJSConstant(nodeIndex);
}
MacroAssembler::ImmPtr constantAsJSValueAsImmPtr(NodeIndex nodeIndex)
{
return MacroAssembler::ImmPtr(JSValue::encode(constantAsJSValue(nodeIndex)));
}
// Helper functions to enable code sharing in implementations of bit/shift ops.
void bitOp(NodeType op, int32_t imm, GPRReg op1, GPRReg result)
{
switch (op) {
case BitAnd:
m_jit.and32(Imm32(imm), op1, result);
break;
case BitOr:
m_jit.or32(Imm32(imm), op1, result);
break;
case BitXor:
m_jit.xor32(Imm32(imm), op1, result);
break;
default:
ASSERT_NOT_REACHED();
}
}
void bitOp(NodeType op, GPRReg op1, GPRReg op2, GPRReg result)
{
switch (op) {
case BitAnd:
m_jit.and32(op1, op2, result);
break;
case BitOr:
m_jit.or32(op1, op2, result);
break;
case BitXor:
m_jit.xor32(op1, op2, result);
break;
default:
ASSERT_NOT_REACHED();
}
}
void shiftOp(NodeType op, GPRReg op1, int32_t shiftAmount, GPRReg result)
{
switch (op) {
case BitRShift:
m_jit.rshift32(op1, Imm32(shiftAmount), result);
break;
case BitLShift:
m_jit.lshift32(op1, Imm32(shiftAmount), result);
break;
case BitURShift:
m_jit.urshift32(op1, Imm32(shiftAmount), result);
break;
default:
ASSERT_NOT_REACHED();
}
}
void shiftOp(NodeType op, GPRReg op1, GPRReg shiftAmount, GPRReg result)
{
switch (op) {
case BitRShift:
m_jit.rshift32(op1, shiftAmount, result);
break;
case BitLShift:
m_jit.lshift32(op1, shiftAmount, result);
break;
case BitURShift:
m_jit.urshift32(op1, shiftAmount, result);
break;
default:
ASSERT_NOT_REACHED();
}
}
// Called once a node has completed code generation but prior to setting
// its result, to free up its children. (This must happen prior to setting
// the nodes result, since the node may have the same VirtualRegister as
// a child, and as such will use the same GeneratioInfo).
void useChildren(Node&);
// These method called to initialize the the GenerationInfo
// to describe the result of an operation.
void integerResult(GPRReg reg, NodeIndex nodeIndex, DataFormat format = DataFormatInteger)
{
Node& node = m_jit.graph()[nodeIndex];
useChildren(node);
VirtualRegister virtualRegister = node.virtualRegister();
GenerationInfo& info = m_generationInfo[virtualRegister];
if (format == DataFormatInteger) {
m_jit.jitAssertIsInt32(reg);
m_gprs.retain(reg, virtualRegister, SpillOrderInteger);
info.initInteger(nodeIndex, node.refCount(), reg);
} else {
ASSERT(format == DataFormatJSInteger);
m_jit.jitAssertIsJSInt32(reg);
m_gprs.retain(reg, virtualRegister, SpillOrderJS);
info.initJSValue(nodeIndex, node.refCount(), reg, format);
}
}
void noResult(NodeIndex nodeIndex)
{
Node& node = m_jit.graph()[nodeIndex];
useChildren(node);
}
void cellResult(GPRReg reg, NodeIndex nodeIndex)
{
Node& node = m_jit.graph()[nodeIndex];
useChildren(node);
VirtualRegister virtualRegister = node.virtualRegister();
m_gprs.retain(reg, virtualRegister, SpillOrderCell);
GenerationInfo& info = m_generationInfo[virtualRegister];
info.initCell(nodeIndex, node.refCount(), reg);
}
void jsValueResult(GPRReg reg, NodeIndex nodeIndex, DataFormat format = DataFormatJS)
{
if (format == DataFormatJSInteger)
m_jit.jitAssertIsJSInt32(reg);
Node& node = m_jit.graph()[nodeIndex];
useChildren(node);
VirtualRegister virtualRegister = node.virtualRegister();
m_gprs.retain(reg, virtualRegister, SpillOrderJS);
GenerationInfo& info = m_generationInfo[virtualRegister];
info.initJSValue(nodeIndex, node.refCount(), reg, format);
}
void doubleResult(FPRReg reg, NodeIndex nodeIndex)
{
Node& node = m_jit.graph()[nodeIndex];
useChildren(node);
VirtualRegister virtualRegister = node.virtualRegister();
m_fprs.retain(reg, virtualRegister, SpillOrderDouble);
GenerationInfo& info = m_generationInfo[virtualRegister];
info.initDouble(nodeIndex, node.refCount(), reg);
}
void initConstantInfo(NodeIndex nodeIndex)
{
ASSERT(isInt32Constant(nodeIndex) || isDoubleConstant(nodeIndex) || isJSConstant(nodeIndex));
Node& node = m_jit.graph()[nodeIndex];
m_generationInfo[node.virtualRegister()].initConstant(nodeIndex, node.refCount());
}
// These methods used to sort arguments into the correct registers.
template<GPRReg destA, GPRReg destB>
void setupTwoStubArgs(GPRReg srcA, GPRReg srcB)
{
// Assuming that srcA != srcB, there are 7 interesting states the registers may be in:
// (1) both are already in arg regs, the right way around.
// (2) both are already in arg regs, the wrong way around.
// (3) neither are currently in arg registers.
// (4) srcA in in its correct reg.
// (5) srcA in in the incorrect reg.
// (6) srcB in in its correct reg.
// (7) srcB in in the incorrect reg.
//
// The trivial approach is to simply emit two moves, to put srcA in place then srcB in
// place (the MacroAssembler will omit redundant moves). This apporach will be safe in
// cases 1, 3, 4, 5, 6, and in cases where srcA==srcB. The two problem cases are 2
// (requires a swap) and 7 (must move srcB first, to avoid trampling.)
if (srcB != destA) {
// Handle the easy cases - two simple moves.
m_jit.move(srcA, destA);
m_jit.move(srcB, destB);
} else if (srcA != destB) {
// Handle the non-swap case - just put srcB in place first.
m_jit.move(srcB, destB);
m_jit.move(srcA, destA);
} else
m_jit.swap(destB, destB);
}
template<FPRReg destA, FPRReg destB>
void setupTwoStubArgs(FPRReg srcA, FPRReg srcB)
{
// Assuming that srcA != srcB, there are 7 interesting states the registers may be in:
// (1) both are already in arg regs, the right way around.
// (2) both are already in arg regs, the wrong way around.
// (3) neither are currently in arg registers.
// (4) srcA in in its correct reg.
// (5) srcA in in the incorrect reg.
// (6) srcB in in its correct reg.
// (7) srcB in in the incorrect reg.
//
// The trivial approach is to simply emit two moves, to put srcA in place then srcB in
// place (the MacroAssembler will omit redundant moves). This apporach will be safe in
// cases 1, 3, 4, 5, 6, and in cases where srcA==srcB. The two problem cases are 2
// (requires a swap) and 7 (must move srcB first, to avoid trampling.)
if (srcB != destA) {
// Handle the easy cases - two simple moves.
m_jit.moveDouble(srcA, destA);
m_jit.moveDouble(srcB, destB);
return;
}
if (srcA != destB) {
// Handle the non-swap case - just put srcB in place first.
m_jit.moveDouble(srcB, destB);
m_jit.moveDouble(srcA, destA);
return;
}
ASSERT(srcB == destA && srcA == destB);
// Need to swap; pick a temporary register.
FPRReg temp;
if (destA != FPRInfo::argumentFPR3 && destA != FPRInfo::argumentFPR3)
temp = FPRInfo::argumentFPR3;
else if (destA != FPRInfo::argumentFPR2 && destA != FPRInfo::argumentFPR2)
temp = FPRInfo::argumentFPR2;
else {
ASSERT(destA != FPRInfo::argumentFPR1 && destA != FPRInfo::argumentFPR1);
temp = FPRInfo::argumentFPR1;
}
m_jit.moveDouble(destA, temp);
m_jit.moveDouble(destB, destA);
m_jit.moveDouble(temp, destB);
}
void setupStubArguments(GPRReg arg1, GPRReg arg2)
{
setupTwoStubArgs<GPRInfo::argumentGPR1, GPRInfo::argumentGPR2>(arg1, arg2);
}
void setupStubArguments(GPRReg arg1, GPRReg arg2, GPRReg arg3)
{
// If neither of arg2/arg3 are in our way, then we can move arg1 into place.
// Then we can use setupTwoStubArgs to fix arg2/arg3.
if (arg2 != GPRInfo::argumentGPR1 && arg3 != GPRInfo::argumentGPR1) {
m_jit.move(arg1, GPRInfo::argumentGPR1);
setupTwoStubArgs<GPRInfo::argumentGPR2, GPRInfo::argumentGPR3>(arg2, arg3);
return;
}
// If neither of arg1/arg3 are in our way, then we can move arg2 into place.
// Then we can use setupTwoStubArgs to fix arg1/arg3.
if (arg1 != GPRInfo::argumentGPR2 && arg3 != GPRInfo::argumentGPR2) {
m_jit.move(arg2, GPRInfo::argumentGPR2);
setupTwoStubArgs<GPRInfo::argumentGPR1, GPRInfo::argumentGPR3>(arg1, arg3);
return;
}
// If neither of arg1/arg2 are in our way, then we can move arg3 into place.
// Then we can use setupTwoStubArgs to fix arg1/arg2.
if (arg1 != GPRInfo::argumentGPR3 && arg2 != GPRInfo::argumentGPR3) {
m_jit.move(arg3, GPRInfo::argumentGPR3);
setupTwoStubArgs<GPRInfo::argumentGPR1, GPRInfo::argumentGPR2>(arg1, arg2);
return;
}
// If we get here, we haven't been able to move any of arg1/arg2/arg3.
// Since all three are blocked, then all three must already be in the argument register.
// But are they in the right ones?
// First, ensure arg1 is in place.
if (arg1 != GPRInfo::argumentGPR1) {
m_jit.swap(arg1, GPRInfo::argumentGPR1);
// If arg1 wasn't in argumentGPR1, one of arg2/arg3 must be.
ASSERT(arg2 == GPRInfo::argumentGPR1 || arg3 == GPRInfo::argumentGPR1);
// If arg2 was in argumentGPR1 it no longer is (due to the swap).
// Otherwise arg3 must have been. Mark him as moved.
if (arg2 == GPRInfo::argumentGPR1)
arg2 = arg1;
else
arg3 = arg1;
}
// Either arg2 & arg3 need swapping, or we're all done.
ASSERT((arg2 == GPRInfo::argumentGPR2 || arg3 == GPRInfo::argumentGPR3)
|| (arg2 == GPRInfo::argumentGPR3 || arg3 == GPRInfo::argumentGPR2));
if (arg2 != GPRInfo::argumentGPR2)
m_jit.swap(GPRInfo::argumentGPR2, GPRInfo::argumentGPR3);
}
// These methods add calls to C++ helper functions.
void callOperation(J_DFGOperation_EJP operation, GPRReg result, GPRReg arg1, void* pointer)
{
ASSERT(isFlushed());
m_jit.move(arg1, GPRInfo::argumentGPR1);
m_jit.move(JITCompiler::TrustedImmPtr(pointer), GPRInfo::argumentGPR2);
m_jit.move(GPRInfo::callFrameRegister, GPRInfo::argumentGPR0);
appendCallWithExceptionCheck(operation);
m_jit.move(GPRInfo::returnValueGPR, result);
}
void callOperation(J_DFGOperation_EJI operation, GPRReg result, GPRReg arg1, Identifier* identifier)
{
callOperation((J_DFGOperation_EJP)operation, result, arg1, identifier);
}
void callOperation(J_DFGOperation_EJ operation, GPRReg result, GPRReg arg1)
{
ASSERT(isFlushed());
m_jit.move(arg1, GPRInfo::argumentGPR1);
m_jit.move(GPRInfo::callFrameRegister, GPRInfo::argumentGPR0);
appendCallWithExceptionCheck(operation);
m_jit.move(GPRInfo::returnValueGPR, result);
}
void callOperation(Z_DFGOperation_EJ operation, GPRReg result, GPRReg arg1)
{
ASSERT(isFlushed());
m_jit.move(arg1, GPRInfo::argumentGPR1);
m_jit.move(GPRInfo::callFrameRegister, GPRInfo::argumentGPR0);
appendCallWithExceptionCheck(operation);
m_jit.move(GPRInfo::returnValueGPR, result);
}
void callOperation(Z_DFGOperation_EJJ operation, GPRReg result, GPRReg arg1, GPRReg arg2)
{
ASSERT(isFlushed());
setupStubArguments(arg1, arg2);
m_jit.move(GPRInfo::callFrameRegister, GPRInfo::argumentGPR0);
appendCallWithExceptionCheck(operation);
m_jit.move(GPRInfo::returnValueGPR, result);
}
void callOperation(J_DFGOperation_EJJ operation, GPRReg result, GPRReg arg1, GPRReg arg2)
{
ASSERT(isFlushed());
setupStubArguments(arg1, arg2);
m_jit.move(GPRInfo::callFrameRegister, GPRInfo::argumentGPR0);
appendCallWithExceptionCheck(operation);
m_jit.move(GPRInfo::returnValueGPR, result);
}
void callOperation(V_DFGOperation_EJJP operation, GPRReg arg1, GPRReg arg2, void* pointer)
{
ASSERT(isFlushed());
setupStubArguments(arg1, arg2);
m_jit.move(JITCompiler::TrustedImmPtr(pointer), GPRInfo::argumentGPR3);
m_jit.move(GPRInfo::callFrameRegister, GPRInfo::argumentGPR0);
appendCallWithExceptionCheck(operation);
}
void callOperation(V_DFGOperation_EJJI operation, GPRReg arg1, GPRReg arg2, Identifier* identifier)
{
callOperation((V_DFGOperation_EJJP)operation, arg1, arg2, identifier);
}
void callOperation(V_DFGOperation_EJJJ operation, GPRReg arg1, GPRReg arg2, GPRReg arg3)
{
ASSERT(isFlushed());
setupStubArguments(arg1, arg2, arg3);
m_jit.move(GPRInfo::callFrameRegister, GPRInfo::argumentGPR0);
appendCallWithExceptionCheck(operation);
}
void callOperation(D_DFGOperation_DD operation, FPRReg result, FPRReg arg1, FPRReg arg2)
{
ASSERT(isFlushed());
setupTwoStubArgs<FPRInfo::argumentFPR0, FPRInfo::argumentFPR1>(arg1, arg2);
m_jit.appendCall(operation);
m_jit.moveDouble(FPRInfo::returnValueFPR, result);
}
void appendCallWithExceptionCheck(const FunctionPtr& function)
{
m_jit.appendCallWithExceptionCheck(function, m_jit.graph()[m_compileIndex].exceptionInfo);
}
void addBranch(const MacroAssembler::Jump& jump, BlockIndex destination)
{
m_branches.append(BranchRecord(jump, destination));
}
void linkBranches()
{
for (size_t i = 0; i < m_branches.size(); ++i) {
BranchRecord& branch = m_branches[i];
branch.jump.linkTo(m_blockHeads[branch.destination], &m_jit);
}
}
#ifndef NDEBUG
void dump(const char* label = 0);
#endif
#if DFG_CONSISTENCY_CHECK
void checkConsistency();
#else
void checkConsistency() {}
#endif
// The JIT, while also provides MacroAssembler functionality.
JITCompiler& m_jit;
// This flag is used to distinguish speculative and non-speculative
// code generation. This is significant when filling spilled values
// from the RegisterFile. When spilling we attempt to store information
// as to the type of boxed value being stored (int32, double, cell), and
// when filling on the speculative path we will retrieve this type info
// where available. On the non-speculative path, however, we cannot rely
// on the spill format info, since the a value being loaded might have
// been spilled by either the speculative or non-speculative paths (where
// we entered the non-speculative path on an intervening bail-out), and
// the value may have been boxed differently on the two paths.
bool m_isSpeculative;
// The current node being generated.
BlockIndex m_block;
NodeIndex m_compileIndex;
// Virtual and physical register maps.
Vector<GenerationInfo, 32> m_generationInfo;
RegisterBank<GPRInfo> m_gprs;
RegisterBank<FPRInfo> m_fprs;
Vector<MacroAssembler::Label> m_blockHeads;
struct BranchRecord {
BranchRecord(MacroAssembler::Jump jump, BlockIndex destination)
: jump(jump)
, destination(destination)
{
}
MacroAssembler::Jump jump;
BlockIndex destination;
};
Vector<BranchRecord, 8> m_branches;
};
// === Operand types ===
//
// IntegerOperand, DoubleOperand and JSValueOperand.
//
// These classes are used to lock the operands to a node into machine
// registers. These classes implement of pattern of locking a value
// into register at the point of construction only if it is already in
// registers, and otherwise loading it lazily at the point it is first
// used. We do so in order to attempt to avoid spilling one operand
// in order to make space available for another.
class IntegerOperand {
public:
explicit IntegerOperand(JITCodeGenerator* jit, NodeIndex index)
: m_jit(jit)
, m_index(index)
, m_gprOrInvalid(InvalidGPRReg)
#ifndef NDEBUG
, m_format(DataFormatNone)
#endif
{
ASSERT(m_jit);
if (jit->isFilled(index))
gpr();
}
~IntegerOperand()
{
ASSERT(m_gprOrInvalid != InvalidGPRReg);
m_jit->unlock(m_gprOrInvalid);
}
NodeIndex index() const
{
return m_index;
}
DataFormat format()
{
gpr(); // m_format is set when m_gpr is locked.
ASSERT(m_format == DataFormatInteger || m_format == DataFormatJSInteger);
return m_format;
}
GPRReg gpr()
{
if (m_gprOrInvalid == InvalidGPRReg)
m_gprOrInvalid = m_jit->fillInteger(index(), m_format);
return m_gprOrInvalid;
}
private:
JITCodeGenerator* m_jit;
NodeIndex m_index;
GPRReg m_gprOrInvalid;
DataFormat m_format;
};
class DoubleOperand {
public:
explicit DoubleOperand(JITCodeGenerator* jit, NodeIndex index)
: m_jit(jit)
, m_index(index)
, m_fprOrInvalid(InvalidFPRReg)
{
ASSERT(m_jit);
if (jit->isFilledDouble(index))
fpr();
}
~DoubleOperand()
{
ASSERT(m_fprOrInvalid != InvalidFPRReg);
m_jit->unlock(m_fprOrInvalid);
}
NodeIndex index() const
{
return m_index;
}
FPRReg fpr()
{
if (m_fprOrInvalid == InvalidFPRReg)
m_fprOrInvalid = m_jit->fillDouble(index());
return m_fprOrInvalid;
}
private:
JITCodeGenerator* m_jit;
NodeIndex m_index;
FPRReg m_fprOrInvalid;
};
class JSValueOperand {
public:
explicit JSValueOperand(JITCodeGenerator* jit, NodeIndex index)
: m_jit(jit)
, m_index(index)
, m_gprOrInvalid(InvalidGPRReg)
{
ASSERT(m_jit);
if (jit->isFilled(index))
gpr();
}
~JSValueOperand()
{
ASSERT(m_gprOrInvalid != InvalidGPRReg);
m_jit->unlock(m_gprOrInvalid);
}
NodeIndex index() const
{
return m_index;
}
GPRReg gpr()
{
if (m_gprOrInvalid == InvalidGPRReg)
m_gprOrInvalid = m_jit->fillJSValue(index());
return m_gprOrInvalid;
}
private:
JITCodeGenerator* m_jit;
NodeIndex m_index;
GPRReg m_gprOrInvalid;
};
// === Temporaries ===
//
// These classes are used to allocate temporary registers.
// A mechanism is provided to attempt to reuse the registers
// currently allocated to child nodes whose value is consumed
// by, and not live after, this operation.
class GPRTemporary {
public:
GPRTemporary(JITCodeGenerator*);
GPRTemporary(JITCodeGenerator*, SpeculateIntegerOperand&);
GPRTemporary(JITCodeGenerator*, SpeculateIntegerOperand&, SpeculateIntegerOperand&);
GPRTemporary(JITCodeGenerator*, IntegerOperand&);
GPRTemporary(JITCodeGenerator*, IntegerOperand&, IntegerOperand&);
GPRTemporary(JITCodeGenerator*, SpeculateCellOperand&);
GPRTemporary(JITCodeGenerator*, JSValueOperand&);
~GPRTemporary()
{
m_jit->unlock(gpr());
}
GPRReg gpr()
{
ASSERT(m_gpr != InvalidGPRReg);
return m_gpr;
}
protected:
GPRTemporary(JITCodeGenerator* jit, GPRReg lockedGPR)
: m_jit(jit)
, m_gpr(lockedGPR)
{
}
private:
JITCodeGenerator* m_jit;
GPRReg m_gpr;
};
class FPRTemporary {
public:
FPRTemporary(JITCodeGenerator*);
FPRTemporary(JITCodeGenerator*, DoubleOperand&);
FPRTemporary(JITCodeGenerator*, DoubleOperand&, DoubleOperand&);
~FPRTemporary()
{
m_jit->unlock(fpr());
}
FPRReg fpr() const
{
ASSERT(m_fpr != InvalidFPRReg);
return m_fpr;
}
protected:
FPRTemporary(JITCodeGenerator* jit, FPRReg lockedFPR)
: m_jit(jit)
, m_fpr(lockedFPR)
{
}
private:
JITCodeGenerator* m_jit;
FPRReg m_fpr;
};
// === Results ===
//
// These classes lock the result of a call to a C++ helper function.
class GPRResult : public GPRTemporary {
public:
GPRResult(JITCodeGenerator* jit)
: GPRTemporary(jit, lockedResult(jit))
{
}
private:
static GPRReg lockedResult(JITCodeGenerator* jit)
{
jit->lock(GPRInfo::returnValueGPR);
return GPRInfo::returnValueGPR;
}
};
class FPRResult : public FPRTemporary {
public:
FPRResult(JITCodeGenerator* jit)
: FPRTemporary(jit, lockedResult(jit))
{
}
private:
static FPRReg lockedResult(JITCodeGenerator* jit)
{
jit->lock(FPRInfo::returnValueFPR);
return FPRInfo::returnValueFPR;
}
};
} } // namespace JSC::DFG
#endif
#endif
|