1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250
|
/*
* Copyright (C) 2011 Apple Inc. All rights reserved.
*
* Redistribution and use in source and binary forms, with or without
* modification, are permitted provided that the following conditions
* are met:
* 1. Redistributions of source code must retain the above copyright
* notice, this list of conditions and the following disclaimer.
* 2. Redistributions in binary form must reproduce the above copyright
* notice, this list of conditions and the following disclaimer in the
* documentation and/or other materials provided with the distribution.
*
* THIS SOFTWARE IS PROVIDED BY APPLE INC. ``AS IS'' AND ANY
* EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
* IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR
* PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL APPLE INC. OR
* CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL,
* EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO,
* PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR
* PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY
* OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT
* (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE
* OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
*/
#ifndef DFGNonSpeculativeJIT_h
#define DFGNonSpeculativeJIT_h
#if ENABLE(DFG_JIT)
#include <dfg/DFGJITCodeGenerator.h>
namespace JSC { namespace DFG {
class SpeculationCheckIndexIterator;
// === EntryLocation ===
//
// This structure describes an entry point into the non-speculative
// code path. This is used in linking bail-outs from the speculative path.
struct EntryLocation {
EntryLocation(MacroAssembler::Label, NonSpeculativeJIT*);
// The node this entry point corresponds to, and the label
// marking the start of code for the given node.
MacroAssembler::Label m_entry;
NodeIndex m_nodeIndex;
// For every entry point we record a map recording for every
// machine register which, if any, values it contains. For
// GPR registers we must also record the format of the value.
struct RegisterInfo {
NodeIndex nodeIndex;
DataFormat format;
};
RegisterInfo m_gprInfo[GPRInfo::numberOfRegisters];
NodeIndex m_fprInfo[FPRInfo::numberOfRegisters];
};
// === NonSpeculativeJIT ===
//
// This class is used to generate code for the non-speculative path.
// Code generation will take advantage of static information available
// in the dataflow to perform safe optimizations - for example, avoiding
// boxing numeric values between arithmetic operations, but will not
// perform any unsafe optimizations that would render the code unable
// to produce the correct results for any possible input.
class NonSpeculativeJIT : public JITCodeGenerator {
friend struct EntryLocation;
public:
NonSpeculativeJIT(JITCompiler& jit)
: JITCodeGenerator(jit, false)
{
}
void compile(SpeculationCheckIndexIterator&);
typedef SegmentedVector<EntryLocation, 16> EntryLocationVector;
EntryLocationVector& entryLocations() { return m_entryLocations; }
private:
void compile(SpeculationCheckIndexIterator&, Node&);
void compile(SpeculationCheckIndexIterator&, BasicBlock&);
bool isKnownInteger(NodeIndex);
bool isKnownNumeric(NodeIndex);
// These methods are used when generating 'unexpected'
// calls out from JIT code to C++ helper routines -
// they spill all live values to the appropriate
// slots in the RegisterFile without changing any state
// in the GenerationInfo.
void silentSpillGPR(VirtualRegister spillMe, GPRReg exclude = InvalidGPRReg)
{
GenerationInfo& info = m_generationInfo[spillMe];
ASSERT(info.registerFormat() != DataFormatNone && info.registerFormat() != DataFormatDouble);
if (!info.needsSpill() || (info.gpr() == exclude))
return;
DataFormat registerFormat = info.registerFormat();
if (registerFormat == DataFormatInteger) {
m_jit.orPtr(GPRInfo::tagTypeNumberRegister, info.gpr());
m_jit.storePtr(info.gpr(), JITCompiler::addressFor(spillMe));
} else {
ASSERT(registerFormat & DataFormatJS || registerFormat == DataFormatCell);
m_jit.storePtr(info.gpr(), JITCompiler::addressFor(spillMe));
}
}
void silentSpillFPR(VirtualRegister spillMe, GPRReg canTrample, FPRReg exclude = InvalidFPRReg)
{
GenerationInfo& info = m_generationInfo[spillMe];
ASSERT(info.registerFormat() == DataFormatDouble);
if (!info.needsSpill() || (info.fpr() == exclude))
return;
boxDouble(info.fpr(), canTrample);
m_jit.storePtr(canTrample, JITCompiler::addressFor(spillMe));
}
void silentFillGPR(VirtualRegister spillMe, GPRReg exclude = InvalidGPRReg)
{
GenerationInfo& info = m_generationInfo[spillMe];
if (info.gpr() == exclude)
return;
NodeIndex nodeIndex = info.nodeIndex();
Node& node = m_jit.graph()[nodeIndex];
ASSERT(info.registerFormat() != DataFormatNone && info.registerFormat() != DataFormatDouble);
DataFormat registerFormat = info.registerFormat();
if (registerFormat == DataFormatInteger) {
if (node.isConstant()) {
ASSERT(isInt32Constant(nodeIndex));
m_jit.move(Imm32(valueOfInt32Constant(nodeIndex)), info.gpr());
} else
m_jit.load32(JITCompiler::addressFor(spillMe), info.gpr());
return;
}
if (node.isConstant())
m_jit.move(constantAsJSValueAsImmPtr(nodeIndex), info.gpr());
else {
ASSERT(registerFormat & DataFormatJS || registerFormat == DataFormatCell);
m_jit.loadPtr(JITCompiler::addressFor(spillMe), info.gpr());
}
}
void silentFillFPR(VirtualRegister spillMe, GPRReg canTrample, FPRReg exclude = InvalidFPRReg)
{
GenerationInfo& info = m_generationInfo[spillMe];
if (info.fpr() == exclude)
return;
NodeIndex nodeIndex = info.nodeIndex();
Node& node = m_jit.graph()[nodeIndex];
ASSERT(info.registerFormat() == DataFormatDouble);
if (node.isConstant())
m_jit.move(constantAsJSValueAsImmPtr(nodeIndex), info.gpr());
else {
m_jit.loadPtr(JITCompiler::addressFor(spillMe), canTrample);
unboxDouble(canTrample, info.fpr());
}
}
void silentSpillAllRegisters(GPRReg exclude, GPRReg preserve = InvalidGPRReg)
{
GPRReg canTrample = GPRInfo::regT0;
if (preserve == GPRInfo::regT0)
canTrample = GPRInfo::regT1;
for (gpr_iterator iter = m_gprs.begin(); iter != m_gprs.end(); ++iter) {
if (iter.name() != InvalidVirtualRegister)
silentSpillGPR(iter.name(), exclude);
}
for (fpr_iterator iter = m_fprs.begin(); iter != m_fprs.end(); ++iter) {
if (iter.name() != InvalidVirtualRegister)
silentSpillFPR(iter.name(), canTrample);
}
}
void silentSpillAllRegisters(FPRReg exclude, GPRReg preserve = InvalidGPRReg)
{
GPRReg canTrample = GPRInfo::regT0;
if (preserve == GPRInfo::regT0)
canTrample = GPRInfo::regT1;
for (gpr_iterator iter = m_gprs.begin(); iter != m_gprs.end(); ++iter) {
if (iter.name() != InvalidVirtualRegister)
silentSpillGPR(iter.name());
}
for (fpr_iterator iter = m_fprs.begin(); iter != m_fprs.end(); ++iter) {
if (iter.name() != InvalidVirtualRegister)
silentSpillFPR(iter.name(), canTrample, exclude);
}
}
void silentFillAllRegisters(GPRReg exclude)
{
GPRReg canTrample = GPRInfo::regT0;
if (exclude == GPRInfo::regT0)
canTrample = GPRInfo::regT1;
for (fpr_iterator iter = m_fprs.begin(); iter != m_fprs.end(); ++iter) {
if (iter.name() != InvalidVirtualRegister)
silentFillFPR(iter.name(), canTrample);
}
for (gpr_iterator iter = m_gprs.begin(); iter != m_gprs.end(); ++iter) {
if (iter.name() != InvalidVirtualRegister)
silentFillGPR(iter.name(), exclude);
}
}
void silentFillAllRegisters(FPRReg exclude)
{
GPRReg canTrample = GPRInfo::regT0;
for (fpr_iterator iter = m_fprs.begin(); iter != m_fprs.end(); ++iter) {
if (iter.name() != InvalidVirtualRegister) {
ASSERT_UNUSED(exclude, iter.regID() != exclude);
silentFillFPR(iter.name(), canTrample, exclude);
}
}
for (gpr_iterator iter = m_gprs.begin(); iter != m_gprs.end(); ++iter) {
if (iter.name() != InvalidVirtualRegister)
silentFillGPR(iter.name());
}
}
// These methods are used to plant calls out to C++
// helper routines to convert between types.
void valueToNumber(JSValueOperand&, FPRReg result);
void valueToInt32(JSValueOperand&, GPRReg result);
void numberToInt32(FPRReg, GPRReg result);
// Record an entry location into the non-speculative code path;
// for every bail-out on the speculative path we record information
// to be able to re-enter into the non-speculative one.
void trackEntry(MacroAssembler::Label entry)
{
m_entryLocations.append(EntryLocation(entry, this));
}
EntryLocationVector m_entryLocations;
};
} } // namespace JSC::DFG
#endif
#endif
|