1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386
|
/*
* Copyright (C) 2011 Apple Inc. All rights reserved.
*
* Redistribution and use in source and binary forms, with or without
* modification, are permitted provided that the following conditions
* are met:
* 1. Redistributions of source code must retain the above copyright
* notice, this list of conditions and the following disclaimer.
* 2. Redistributions in binary form must reproduce the above copyright
* notice, this list of conditions and the following disclaimer in the
* documentation and/or other materials provided with the distribution.
*
* THIS SOFTWARE IS PROVIDED BY APPLE INC. ``AS IS'' AND ANY
* EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
* IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR
* PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL APPLE INC. OR
* CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL,
* EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO,
* PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR
* PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY
* OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT
* (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE
* OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
*/
#ifndef DFGSpeculativeJIT_h
#define DFGSpeculativeJIT_h
#if ENABLE(DFG_JIT)
#include <dfg/DFGJITCodeGenerator.h>
namespace JSC { namespace DFG {
class SpeculativeJIT;
// This enum describes the types of additional recovery that
// may need be performed should a speculation check fail.
enum SpeculationRecoveryType {
SpeculativeAdd
};
// === SpeculationRecovery ===
//
// This class provides additional information that may be associated with a
// speculation check - for example
class SpeculationRecovery {
public:
SpeculationRecovery(SpeculationRecoveryType type, GPRReg dest, GPRReg src)
: m_type(type)
, m_dest(dest)
, m_src(src)
{
}
SpeculationRecoveryType type() { return m_type; }
GPRReg dest() { return m_dest; }
GPRReg src() { return m_src; }
private:
// Indicates the type of additional recovery to be performed.
SpeculationRecoveryType m_type;
// different recovery types may required different additional information here.
GPRReg m_dest;
GPRReg m_src;
};
// === SpeculationCheck ===
//
// This structure records a bail-out from the speculative path,
// which will need to be linked in to the non-speculative one.
struct SpeculationCheck {
SpeculationCheck(MacroAssembler::Jump, SpeculativeJIT*, unsigned recoveryIndex = 0);
// The location of the jump out from the speculative path,
// and the node we were generating code for.
MacroAssembler::Jump m_check;
NodeIndex m_nodeIndex;
// Used to record any additional recovery to be performed; this
// value is an index into the SpeculativeJIT's m_speculationRecoveryList
// array, offset by 1. (m_recoveryIndex == 0) means no recovery.
unsigned m_recoveryIndex;
struct RegisterInfo {
NodeIndex nodeIndex;
DataFormat format;
};
RegisterInfo m_gprInfo[GPRInfo::numberOfRegisters];
NodeIndex m_fprInfo[FPRInfo::numberOfRegisters];
};
typedef SegmentedVector<SpeculationCheck, 16> SpeculationCheckVector;
// === SpeculativeJIT ===
//
// The SpeculativeJIT is used to generate a fast, but potentially
// incomplete code path for the dataflow. When code generating
// we may make assumptions about operand types, dynamically check,
// and bail-out to an alternate code path if these checks fail.
// Importantly, the speculative code path cannot be reentered once
// a speculative check has failed. This allows the SpeculativeJIT
// to propagate type information (including information that has
// only speculatively been asserted) through the dataflow.
class SpeculativeJIT : public JITCodeGenerator {
friend struct SpeculationCheck;
public:
SpeculativeJIT(JITCompiler& jit)
: JITCodeGenerator(jit, true)
, m_compileOkay(true)
{
}
bool compile();
// Retrieve the list of bail-outs from the speculative path,
// and additional recovery information.
SpeculationCheckVector& speculationChecks()
{
return m_speculationChecks;
}
SpeculationRecovery* speculationRecovery(size_t index)
{
// SpeculationCheck::m_recoveryIndex is offset by 1,
// 0 means no recovery.
return index ? &m_speculationRecoveryList[index - 1] : 0;
}
// Called by the speculative operand types, below, to fill operand to
// machine registers, implicitly generating speculation checks as needed.
GPRReg fillSpeculateInt(NodeIndex, DataFormat& returnFormat);
GPRReg fillSpeculateIntStrict(NodeIndex);
GPRReg fillSpeculateCell(NodeIndex);
private:
void compile(Node&);
void compile(BasicBlock&);
void checkArgumentTypes();
void initializeVariableTypes();
bool isDoubleConstantWithInt32Value(NodeIndex nodeIndex, int32_t& out)
{
if (!m_jit.isDoubleConstant(nodeIndex))
return false;
double value = m_jit.valueOfDoubleConstant(nodeIndex);
int32_t asInt32 = static_cast<int32_t>(value);
if (value != asInt32)
return false;
if (!asInt32 && signbit(value))
return false;
out = asInt32;
return true;
}
bool isJSConstantWithInt32Value(NodeIndex nodeIndex, int32_t& out)
{
if (!m_jit.isJSConstant(nodeIndex))
return false;
JSValue value = m_jit.valueOfJSConstant(nodeIndex);
if (!value.isInt32())
return false;
out = value.asInt32();
return true;
}
bool detectPeepHoleBranch()
{
// Check if the block contains precisely one more node.
if (m_compileIndex + 2 != m_jit.graph().m_blocks[m_block]->end)
return false;
// Check if the lastNode is a branch on this node.
Node& lastNode = m_jit.graph()[m_compileIndex + 1];
return lastNode.op == Branch && lastNode.child1 == m_compileIndex;
}
void compilePeepHoleBranch(Node&, JITCompiler::RelationalCondition);
// Add a speculation check without additional recovery.
void speculationCheck(MacroAssembler::Jump jumpToFail)
{
m_speculationChecks.append(SpeculationCheck(jumpToFail, this));
}
// Add a speculation check with additional recovery.
void speculationCheck(MacroAssembler::Jump jumpToFail, const SpeculationRecovery& recovery)
{
m_speculationRecoveryList.append(recovery);
m_speculationChecks.append(SpeculationCheck(jumpToFail, this, m_speculationRecoveryList.size()));
}
// Called when we statically determine that a speculation will fail.
void terminateSpeculativeExecution()
{
// FIXME: in cases where we can statically determine we're going to bail out from the speculative
// JIT we should probably rewind code generation and only produce the non-speculative path.
m_compileOkay = false;
speculationCheck(m_jit.jump());
}
template<bool strict>
GPRReg fillSpeculateIntInternal(NodeIndex, DataFormat& returnFormat);
// It is possible, during speculative generation, to reach a situation in which we
// can statically determine a speculation will fail (for example, when two nodes
// will make conflicting speculations about the same operand). In such cases this
// flag is cleared, indicating no further code generation should take place.
bool m_compileOkay;
// This vector tracks bail-outs from the speculative path to the non-speculative one.
SpeculationCheckVector m_speculationChecks;
// Some bail-outs need to record additional information recording specific recovery
// to be performed (for example, on detected overflow from an add, we may need to
// reverse the addition if an operand is being overwritten).
Vector<SpeculationRecovery, 16> m_speculationRecoveryList;
};
// === Speculative Operand types ===
//
// SpeculateIntegerOperand, SpeculateStrictInt32Operand and SpeculateCellOperand.
//
// These are used to lock the operands to a node into machine registers within the
// SpeculativeJIT. The classes operate like those provided by the JITCodeGenerator,
// however these will perform a speculative check for a more restrictive type than
// we can statically determine the operand to have. If the operand does not have
// the requested type, a bail-out to the non-speculative path will be taken.
class SpeculateIntegerOperand {
public:
explicit SpeculateIntegerOperand(SpeculativeJIT* jit, NodeIndex index)
: m_jit(jit)
, m_index(index)
, m_gprOrInvalid(InvalidGPRReg)
#ifndef NDEBUG
, m_format(DataFormatNone)
#endif
{
ASSERT(m_jit);
if (jit->isFilled(index))
gpr();
}
~SpeculateIntegerOperand()
{
ASSERT(m_gprOrInvalid != InvalidGPRReg);
m_jit->unlock(m_gprOrInvalid);
}
NodeIndex index() const
{
return m_index;
}
DataFormat format()
{
gpr(); // m_format is set when m_gpr is locked.
ASSERT(m_format == DataFormatInteger || m_format == DataFormatJSInteger);
return m_format;
}
GPRReg gpr()
{
if (m_gprOrInvalid == InvalidGPRReg)
m_gprOrInvalid = m_jit->fillSpeculateInt(index(), m_format);
return m_gprOrInvalid;
}
private:
SpeculativeJIT* m_jit;
NodeIndex m_index;
GPRReg m_gprOrInvalid;
DataFormat m_format;
};
class SpeculateStrictInt32Operand {
public:
explicit SpeculateStrictInt32Operand(SpeculativeJIT* jit, NodeIndex index)
: m_jit(jit)
, m_index(index)
, m_gprOrInvalid(InvalidGPRReg)
{
ASSERT(m_jit);
if (jit->isFilled(index))
gpr();
}
~SpeculateStrictInt32Operand()
{
ASSERT(m_gprOrInvalid != InvalidGPRReg);
m_jit->unlock(m_gprOrInvalid);
}
NodeIndex index() const
{
return m_index;
}
GPRReg gpr()
{
if (m_gprOrInvalid == InvalidGPRReg)
m_gprOrInvalid = m_jit->fillSpeculateIntStrict(index());
return m_gprOrInvalid;
}
private:
SpeculativeJIT* m_jit;
NodeIndex m_index;
GPRReg m_gprOrInvalid;
};
class SpeculateCellOperand {
public:
explicit SpeculateCellOperand(SpeculativeJIT* jit, NodeIndex index)
: m_jit(jit)
, m_index(index)
, m_gprOrInvalid(InvalidGPRReg)
{
ASSERT(m_jit);
if (jit->isFilled(index))
gpr();
}
~SpeculateCellOperand()
{
ASSERT(m_gprOrInvalid != InvalidGPRReg);
m_jit->unlock(m_gprOrInvalid);
}
NodeIndex index() const
{
return m_index;
}
GPRReg gpr()
{
if (m_gprOrInvalid == InvalidGPRReg)
m_gprOrInvalid = m_jit->fillSpeculateCell(index());
return m_gprOrInvalid;
}
private:
SpeculativeJIT* m_jit;
NodeIndex m_index;
GPRReg m_gprOrInvalid;
};
// === SpeculationCheckIndexIterator ===
//
// This class is used by the non-speculative JIT to check which
// nodes require entry points from the speculative path.
class SpeculationCheckIndexIterator {
public:
SpeculationCheckIndexIterator(SpeculationCheckVector& speculationChecks)
: m_speculationChecks(speculationChecks)
, m_iter(m_speculationChecks.begin())
, m_end(m_speculationChecks.end())
{
}
bool hasCheckAtIndex(NodeIndex nodeIndex)
{
while (m_iter != m_end) {
NodeIndex current = m_iter->m_nodeIndex;
if (current >= nodeIndex)
return current == nodeIndex;
++m_iter;
}
return false;
}
private:
SpeculationCheckVector& m_speculationChecks;
SpeculationCheckVector::Iterator m_iter;
SpeculationCheckVector::Iterator m_end;
};
} } // namespace JSC::DFG
#endif
#endif
|