1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197
|
/*
* Copyright (C) 1999-2001 Harri Porten (porten@kde.org)
* Copyright (C) 2001 Peter Kelly (pmk@post.com)
* Copyright (C) 2003, 2007, 2008 Apple Inc. All rights reserved.
*
* This library is free software; you can redistribute it and/or
* modify it under the terms of the GNU Library General Public
* License as published by the Free Software Foundation; either
* version 2 of the License, or (at your option) any later version.
*
* This library is distributed in the hope that it will be useful,
* but WITHOUT ANY WARRANTY; without even the implied warranty of
* MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU
* Library General Public License for more details.
*
* You should have received a copy of the GNU Library General Public License
* along with this library; see the file COPYING.LIB. If not, write to
* the Free Software Foundation, Inc., 51 Franklin Street, Fifth Floor,
* Boston, MA 02110-1301, USA.
*
*/
#include "config.h"
#include "JSValue.h"
#include "BooleanConstructor.h"
#include "BooleanPrototype.h"
#include "Error.h"
#include "ExceptionHelpers.h"
#include "JSGlobalObject.h"
#include "JSFunction.h"
#include "JSNotAnObject.h"
#include "NumberObject.h"
#include <wtf/MathExtras.h>
#include <wtf/StringExtras.h>
namespace JSC {
static const double D32 = 4294967296.0;
// ECMA 9.4
double JSValue::toInteger(ExecState* exec) const
{
if (isInt32())
return asInt32();
double d = toNumber(exec);
return isnan(d) ? 0.0 : trunc(d);
}
double JSValue::toIntegerPreserveNaN(ExecState* exec) const
{
if (isInt32())
return asInt32();
return trunc(toNumber(exec));
}
JSObject* JSValue::toObjectSlowCase(ExecState* exec, JSGlobalObject* globalObject) const
{
ASSERT(!isCell());
if (isInt32() || isDouble())
return constructNumber(exec, globalObject, asValue());
if (isTrue() || isFalse())
return constructBooleanFromImmediateBoolean(exec, globalObject, asValue());
ASSERT(isUndefinedOrNull());
throwError(exec, createNotAnObjectError(exec, *this));
return new (exec) JSNotAnObject(exec);
}
JSObject* JSValue::toThisObjectSlowCase(ExecState* exec) const
{
ASSERT(!isCell());
if (isInt32() || isDouble())
return constructNumber(exec, exec->lexicalGlobalObject(), asValue());
if (isTrue() || isFalse())
return constructBooleanFromImmediateBoolean(exec, exec->lexicalGlobalObject(), asValue());
ASSERT(isUndefinedOrNull());
return exec->globalThisValue();
}
JSObject* JSValue::synthesizeObject(ExecState* exec) const
{
ASSERT(!isCell());
if (isNumber())
return constructNumber(exec, exec->lexicalGlobalObject(), asValue());
if (isBoolean())
return constructBooleanFromImmediateBoolean(exec, exec->lexicalGlobalObject(), asValue());
ASSERT(isUndefinedOrNull());
throwError(exec, createNotAnObjectError(exec, *this));
return new (exec) JSNotAnObject(exec);
}
JSObject* JSValue::synthesizePrototype(ExecState* exec) const
{
ASSERT(!isCell());
if (isNumber())
return exec->lexicalGlobalObject()->numberPrototype();
if (isBoolean())
return exec->lexicalGlobalObject()->booleanPrototype();
ASSERT(isUndefinedOrNull());
throwError(exec, createNotAnObjectError(exec, *this));
return new (exec) JSNotAnObject(exec);
}
#ifndef NDEBUG
char* JSValue::description()
{
static const size_t size = 32;
static char description[size];
if (!*this)
snprintf(description, size, "<JSValue()>");
else if (isInt32())
snprintf(description, size, "Int32: %d", asInt32());
else if (isDouble())
snprintf(description, size, "Double: %lf", asDouble());
else if (isCell())
snprintf(description, size, "Cell: %p", asCell());
else if (isTrue())
snprintf(description, size, "True");
else if (isFalse())
snprintf(description, size, "False");
else if (isNull())
snprintf(description, size, "Null");
else if (isUndefined())
snprintf(description, size, "Undefined");
else
snprintf(description, size, "INVALID");
return description;
}
#endif
// This in the ToInt32 operation is defined in section 9.5 of the ECMA-262 spec.
// Note that this operation is identical to ToUInt32 other than to interpretation
// of the resulting bit-pattern (as such this metod is also called to implement
// ToUInt32).
//
// The operation can be descibed as round towards zero, then select the 32 least
// bits of the resulting value in 2s-complement representation.
int32_t toInt32(double number)
{
int64_t bits = WTF::bitwise_cast<int64_t>(number);
int32_t exp = (static_cast<int32_t>(bits >> 52) & 0x7ff) - 0x3ff;
// If exponent < 0 there will be no bits to the left of the decimal point
// after rounding; if the exponent is > 83 then no bits of precision can be
// left in the low 32-bit range of the result (IEEE-754 doubles have 52 bits
// of fractional precision).
// Note this case handles 0, -0, and all infinte, NaN, & denormal value.
if (exp < 0 || exp > 83)
return 0;
// Select the appropriate 32-bits from the floating point mantissa. If the
// exponent is 52 then the bits we need to select are already aligned to the
// lowest bits of the 64-bit integer representation of tghe number, no need
// to shift. If the exponent is greater than 52 we need to shift the value
// left by (exp - 52), if the value is less than 52 we need to shift right
// accordingly.
int32_t result = (exp > 52)
? static_cast<int32_t>(bits << (exp - 52))
: static_cast<int32_t>(bits >> (52 - exp));
// IEEE-754 double precision values are stored omitting an implicit 1 before
// the decimal point; we need to reinsert this now. We may also the shifted
// invalid bits into the result that are not a part of the mantissa (the sign
// and exponent bits from the floatingpoint representation); mask these out.
if (exp < 32) {
int32_t missingOne = 1 << exp;
result &= missingOne - 1;
result += missingOne;
}
// If the input value was negative (we could test either 'number' or 'bits',
// but testing 'bits' is likely faster) invert the result appropriately.
return bits < 0 ? -result : result;
}
NEVER_INLINE double nonInlineNaN()
{
#if OS(SYMBIAN)
return nanval();
#else
return std::numeric_limits<double>::quiet_NaN();
#endif
}
bool JSValue::isValidCallee()
{
return asObject(asObject(asCell())->getAnonymousValue(0))->isGlobalObject();
}
} // namespace JSC
|