1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266
|
/*
* Copyright (C) 2010 Google Inc. All rights reserved.
*
* Redistribution and use in source and binary forms, with or without
* modification, are permitted provided that the following conditions
* are met:
*
* 1. Redistributions of source code must retain the above copyright
* notice, this list of conditions and the following disclaimer.
* 2. Redistributions in binary form must reproduce the above copyright
* notice, this list of conditions and the following disclaimer in the
* documentation and/or other materials provided with the distribution.
* 3. Neither the name of Apple Computer, Inc. ("Apple") nor the names of
* its contributors may be used to endorse or promote products derived
* from this software without specific prior written permission.
*
* THIS SOFTWARE IS PROVIDED BY APPLE AND ITS CONTRIBUTORS "AS IS" AND ANY
* EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED
* WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE
* DISCLAIMED. IN NO EVENT SHALL APPLE OR ITS CONTRIBUTORS BE LIABLE FOR ANY
* DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES
* (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES;
* LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND
* ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT
* (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE OF
* THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
*/
#include "config.h"
#if ENABLE(WEB_AUDIO)
#include "HRTFElevation.h"
#include "AudioBus.h"
#include "AudioFileReader.h"
#include "Biquad.h"
#include "FFTFrame.h"
#include "HRTFPanner.h"
#include <algorithm>
#include <math.h>
#include <wtf/OwnPtr.h>
using namespace std;
namespace WebCore {
const unsigned HRTFElevation::AzimuthSpacing = 15;
const unsigned HRTFElevation::NumberOfRawAzimuths = 360 / AzimuthSpacing;
const unsigned HRTFElevation::InterpolationFactor = 8;
const unsigned HRTFElevation::NumberOfTotalAzimuths = NumberOfRawAzimuths * InterpolationFactor;
// Takes advantage of the symmetry and creates a composite version of the two measured versions. For example, we have both azimuth 30 and -30 degrees
// where the roles of left and right ears are reversed with respect to each other.
bool HRTFElevation::calculateSymmetricKernelsForAzimuthElevation(int azimuth, int elevation, double sampleRate, const String& subjectName,
RefPtr<HRTFKernel>& kernelL, RefPtr<HRTFKernel>& kernelR)
{
RefPtr<HRTFKernel> kernelL1;
RefPtr<HRTFKernel> kernelR1;
bool success = calculateKernelsForAzimuthElevation(azimuth, elevation, sampleRate, subjectName, kernelL1, kernelR1);
if (!success)
return false;
// And symmetric version
int symmetricAzimuth = !azimuth ? 0 : 360 - azimuth;
RefPtr<HRTFKernel> kernelL2;
RefPtr<HRTFKernel> kernelR2;
success = calculateKernelsForAzimuthElevation(symmetricAzimuth, elevation, sampleRate, subjectName, kernelL2, kernelR2);
if (!success)
return false;
// Notice L/R reversal in symmetric version.
kernelL = HRTFKernel::createInterpolatedKernel(kernelL1.get(), kernelR2.get(), 0.5);
kernelR = HRTFKernel::createInterpolatedKernel(kernelR1.get(), kernelL2.get(), 0.5);
return true;
}
bool HRTFElevation::calculateKernelsForAzimuthElevation(int azimuth, int elevation, double sampleRate, const String& subjectName,
RefPtr<HRTFKernel>& kernelL, RefPtr<HRTFKernel>& kernelR)
{
// Valid values for azimuth are 0 -> 345 in 15 degree increments.
// Valid values for elevation are -45 -> +90 in 15 degree increments.
bool isAzimuthGood = azimuth >= 0 && azimuth <= 345 && (azimuth / 15) * 15 == azimuth;
ASSERT(isAzimuthGood);
if (!isAzimuthGood)
return false;
bool isElevationGood = elevation >= -45 && elevation <= 90 && (elevation / 15) * 15 == elevation;
ASSERT(isElevationGood);
if (!isElevationGood)
return false;
// Construct the resource name from the subject name, azimuth, and elevation, for example:
// "IRC_Composite_C_R0195_T015_P000"
// Note: the passed in subjectName is not a string passed in via JavaScript or the web.
// It's passed in as an internal ASCII identifier and is an implementation detail.
int positiveElevation = elevation < 0 ? elevation + 360 : elevation;
String resourceName = String::format("IRC_%s_C_R0195_T%03d_P%03d", subjectName.utf8().data(), azimuth, positiveElevation);
OwnPtr<AudioBus> impulseResponse(AudioBus::loadPlatformResource(resourceName.utf8().data(), sampleRate));
ASSERT(impulseResponse.get());
if (!impulseResponse.get())
return false;
size_t responseLength = impulseResponse->length();
size_t expectedLength = static_cast<size_t>(256 * (sampleRate / 44100.0));
// Check number of channels and length. For now these are fixed and known.
bool isBusGood = responseLength == expectedLength && impulseResponse->numberOfChannels() == 2;
ASSERT(isBusGood);
if (!isBusGood)
return false;
AudioChannel* leftEarImpulseResponse = impulseResponse->channelByType(AudioBus::ChannelLeft);
AudioChannel* rightEarImpulseResponse = impulseResponse->channelByType(AudioBus::ChannelRight);
// Note that depending on the fftSize returned by the panner, we may be truncating the impulse response we just loaded in.
const size_t fftSize = HRTFPanner::fftSizeForSampleRate(sampleRate);
kernelL = HRTFKernel::create(leftEarImpulseResponse, fftSize, sampleRate, true);
kernelR = HRTFKernel::create(rightEarImpulseResponse, fftSize, sampleRate, true);
return true;
}
// The range of elevations for the IRCAM impulse responses varies depending on azimuth, but the minimum elevation appears to always be -45.
//
// Here's how it goes:
static int maxElevations[] = {
// Azimuth
//
90, // 0
45, // 15
60, // 30
45, // 45
75, // 60
45, // 75
60, // 90
45, // 105
75, // 120
45, // 135
60, // 150
45, // 165
75, // 180
45, // 195
60, // 210
45, // 225
75, // 240
45, // 255
60, // 270
45, // 285
75, // 300
45, // 315
60, // 330
45 // 345
};
PassOwnPtr<HRTFElevation> HRTFElevation::createForSubject(const String& subjectName, int elevation, double sampleRate)
{
bool isElevationGood = elevation >= -45 && elevation <= 90 && (elevation / 15) * 15 == elevation;
ASSERT(isElevationGood);
if (!isElevationGood)
return 0;
OwnPtr<HRTFKernelList> kernelListL = adoptPtr(new HRTFKernelList(NumberOfTotalAzimuths));
OwnPtr<HRTFKernelList> kernelListR = adoptPtr(new HRTFKernelList(NumberOfTotalAzimuths));
// Load convolution kernels from HRTF files.
int interpolatedIndex = 0;
for (unsigned rawIndex = 0; rawIndex < NumberOfRawAzimuths; ++rawIndex) {
// Don't let elevation exceed maximum for this azimuth.
int maxElevation = maxElevations[rawIndex];
int actualElevation = min(elevation, maxElevation);
bool success = calculateKernelsForAzimuthElevation(rawIndex * AzimuthSpacing, actualElevation, sampleRate, subjectName, kernelListL->at(interpolatedIndex), kernelListR->at(interpolatedIndex));
if (!success)
return 0;
interpolatedIndex += InterpolationFactor;
}
// Now go back and interpolate intermediate azimuth values.
for (unsigned i = 0; i < NumberOfTotalAzimuths; i += InterpolationFactor) {
int j = (i + InterpolationFactor) % NumberOfTotalAzimuths;
// Create the interpolated convolution kernels and delays.
for (unsigned jj = 1; jj < InterpolationFactor; ++jj) {
double x = double(jj) / double(InterpolationFactor); // interpolate from 0 -> 1
(*kernelListL)[i + jj] = HRTFKernel::createInterpolatedKernel(kernelListL->at(i).get(), kernelListL->at(j).get(), x);
(*kernelListR)[i + jj] = HRTFKernel::createInterpolatedKernel(kernelListR->at(i).get(), kernelListR->at(j).get(), x);
}
}
OwnPtr<HRTFElevation> hrtfElevation = adoptPtr(new HRTFElevation(kernelListL.release(), kernelListR.release(), elevation, sampleRate));
return hrtfElevation.release();
}
PassOwnPtr<HRTFElevation> HRTFElevation::createByInterpolatingSlices(HRTFElevation* hrtfElevation1, HRTFElevation* hrtfElevation2, double x, double sampleRate)
{
ASSERT(hrtfElevation1 && hrtfElevation2);
if (!hrtfElevation1 || !hrtfElevation2)
return 0;
ASSERT(x >= 0.0 && x < 1.0);
OwnPtr<HRTFKernelList> kernelListL = adoptPtr(new HRTFKernelList(NumberOfTotalAzimuths));
OwnPtr<HRTFKernelList> kernelListR = adoptPtr(new HRTFKernelList(NumberOfTotalAzimuths));
HRTFKernelList* kernelListL1 = hrtfElevation1->kernelListL();
HRTFKernelList* kernelListR1 = hrtfElevation1->kernelListR();
HRTFKernelList* kernelListL2 = hrtfElevation2->kernelListL();
HRTFKernelList* kernelListR2 = hrtfElevation2->kernelListR();
// Interpolate kernels of corresponding azimuths of the two elevations.
for (unsigned i = 0; i < NumberOfTotalAzimuths; ++i) {
(*kernelListL)[i] = HRTFKernel::createInterpolatedKernel(kernelListL1->at(i).get(), kernelListL2->at(i).get(), x);
(*kernelListR)[i] = HRTFKernel::createInterpolatedKernel(kernelListR1->at(i).get(), kernelListR2->at(i).get(), x);
}
// Interpolate elevation angle.
double angle = (1.0 - x) * hrtfElevation1->elevationAngle() + x * hrtfElevation2->elevationAngle();
OwnPtr<HRTFElevation> hrtfElevation = adoptPtr(new HRTFElevation(kernelListL.release(), kernelListR.release(), static_cast<int>(angle), sampleRate));
return hrtfElevation.release();
}
void HRTFElevation::getKernelsFromAzimuth(double azimuthBlend, unsigned azimuthIndex, HRTFKernel* &kernelL, HRTFKernel* &kernelR, double& frameDelayL, double& frameDelayR)
{
bool checkAzimuthBlend = azimuthBlend >= 0.0 && azimuthBlend < 1.0;
ASSERT(checkAzimuthBlend);
if (!checkAzimuthBlend)
azimuthBlend = 0.0;
unsigned numKernels = m_kernelListL->size();
bool isIndexGood = azimuthIndex < numKernels;
ASSERT(isIndexGood);
if (!isIndexGood) {
kernelL = 0;
kernelR = 0;
return;
}
// Return the left and right kernels.
kernelL = m_kernelListL->at(azimuthIndex).get();
kernelR = m_kernelListR->at(azimuthIndex).get();
frameDelayL = m_kernelListL->at(azimuthIndex)->frameDelay();
frameDelayR = m_kernelListR->at(azimuthIndex)->frameDelay();
int azimuthIndex2 = (azimuthIndex + 1) % numKernels;
double frameDelay2L = m_kernelListL->at(azimuthIndex2)->frameDelay();
double frameDelay2R = m_kernelListR->at(azimuthIndex2)->frameDelay();
// Linearly interpolate delays.
frameDelayL = (1.0 - azimuthBlend) * frameDelayL + azimuthBlend * frameDelay2L;
frameDelayR = (1.0 - azimuthBlend) * frameDelayR + azimuthBlend * frameDelay2R;
}
} // namespace WebCore
#endif // ENABLE(WEB_AUDIO)
|