1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305
|
/*
* Copyright (C) 2011 Google Inc. All rights reserved.
*
* Redistribution and use in source and binary forms, with or without
* modification, are permitted provided that the following conditions
* are met:
*
* 1. Redistributions of source code must retain the above copyright
* notice, this list of conditions and the following disclaimer.
* 2. Redistributions in binary form must reproduce the above copyright
* notice, this list of conditions and the following disclaimer in the
* documentation and/or other materials provided with the distribution.
*
* THIS SOFTWARE IS PROVIDED BY APPLE AND ITS CONTRIBUTORS "AS IS" AND ANY
* EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED
* WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE
* DISCLAIMED. IN NO EVENT SHALL APPLE OR ITS CONTRIBUTORS BE LIABLE FOR ANY
* DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES
* (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES;
* LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND
* ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT
* (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE OF
* THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
*/
// FFTFrame implementation using the FFTW library.
#include "config.h"
#if ENABLE(WEB_AUDIO)
#if !OS(DARWIN) && USE(WEBAUDIO_FFTW)
#include "FFTFrame.h"
#include <wtf/MathExtras.h>
namespace WebCore {
const int kMaxFFTPow2Size = 24;
fftwf_plan* FFTFrame::fftwForwardPlans = 0;
fftwf_plan* FFTFrame::fftwBackwardPlans = 0;
Mutex* FFTFrame::s_planLock = 0;
namespace {
unsigned unpackedFFTWDataSize(unsigned fftSize)
{
return fftSize / 2 + 1;
}
} // anonymous namespace
// Normal constructor: allocates for a given fftSize.
FFTFrame::FFTFrame(unsigned fftSize)
: m_FFTSize(fftSize)
, m_log2FFTSize(static_cast<unsigned>(log2(fftSize)))
, m_forwardPlan(0)
, m_backwardPlan(0)
, m_data(2 * (3 + unpackedFFTWDataSize(fftSize))) // enough space for real and imaginary data plus 16-byte alignment padding
{
// We only allow power of two.
ASSERT(1UL << m_log2FFTSize == m_FFTSize);
// FFTW won't create a plan without being able to look at non-null
// pointers for the input and output data; it wants to be able to
// see whether these arrays are aligned properly for vector
// operations. Ideally we would use fftw_malloc and fftw_free for
// the input and output arrays to ensure proper alignment for SIMD
// operations, so that we don't have to specify FFTW_UNALIGNED
// when creating the plan. However, since we don't have control
// over the alignment of the array passed to doFFT / doInverseFFT,
// we would need to memcpy it in to or out of the FFTFrame, adding
// overhead. For the time being, we just assume unaligned data and
// pass a temporary pointer down.
float temporary;
m_forwardPlan = fftwPlanForSize(fftSize, Forward,
&temporary, realData(), imagData());
m_backwardPlan = fftwPlanForSize(fftSize, Backward,
realData(), imagData(), &temporary);
}
// Creates a blank/empty frame (interpolate() must later be called).
FFTFrame::FFTFrame()
: m_FFTSize(0)
, m_log2FFTSize(0)
, m_forwardPlan(0)
, m_backwardPlan(0)
{
}
// Copy constructor.
FFTFrame::FFTFrame(const FFTFrame& frame)
: m_FFTSize(frame.m_FFTSize)
, m_log2FFTSize(frame.m_log2FFTSize)
, m_forwardPlan(0)
, m_backwardPlan(0)
, m_data(2 * (3 + unpackedFFTWDataSize(fftSize()))) // enough space for real and imaginary data plus 16-byte alignment padding
{
// See the normal constructor for an explanation of the temporary pointer.
float temporary;
m_forwardPlan = fftwPlanForSize(m_FFTSize, Forward,
&temporary, realData(), imagData());
m_backwardPlan = fftwPlanForSize(m_FFTSize, Backward,
realData(), imagData(), &temporary);
// Copy/setup frame data.
size_t nbytes = sizeof(float) * unpackedFFTWDataSize(fftSize());
memcpy(realData(), frame.realData(), nbytes);
memcpy(imagData(), frame.imagData(), nbytes);
}
FFTFrame::~FFTFrame()
{
}
void FFTFrame::multiply(const FFTFrame& frame)
{
FFTFrame& frame1 = *this;
FFTFrame& frame2 = const_cast<FFTFrame&>(frame);
float* realP1 = frame1.realData();
float* imagP1 = frame1.imagData();
const float* realP2 = frame2.realData();
const float* imagP2 = frame2.imagData();
// Scale accounts the peculiar scaling of vecLib on the Mac.
// This ensures the right scaling all the way back to inverse FFT.
// FIXME: if we change the scaling on the Mac then this scale
// factor will need to change too.
float scale = 0.5f;
// Multiply the packed DC/nyquist component
realP1[0] *= scale * realP2[0];
imagP1[0] *= scale * imagP2[0];
// Complex multiplication. If this loop turns out to be hot then
// we should use SSE or other intrinsics to accelerate it.
unsigned halfSize = fftSize() / 2;
for (unsigned i = 1; i < halfSize; ++i) {
float realResult = realP1[i] * realP2[i] - imagP1[i] * imagP2[i];
float imagResult = realP1[i] * imagP2[i] + imagP1[i] * realP2[i];
realP1[i] = scale * realResult;
imagP1[i] = scale * imagResult;
}
}
void FFTFrame::doFFT(float* data)
{
fftwf_execute_split_dft_r2c(m_forwardPlan, data, realData(), imagData());
// Scale the frequency domain data to match vecLib's scale factor
// on the Mac. FIXME: if we change the definition of FFTFrame to
// eliminate this scale factor then this code will need to change.
// Also, if this loop turns out to be hot then we should use SSE
// or other intrinsics to accelerate it.
float scaleFactor = 2;
unsigned length = unpackedFFTWDataSize(fftSize());
float* realData = this->realData();
float* imagData = this->imagData();
for (unsigned i = 0; i < length; ++i) {
realData[i] = realData[i] * scaleFactor;
imagData[i] = imagData[i] * scaleFactor;
}
// Move the Nyquist component to the location expected by the
// FFTFrame API.
imagData[0] = realData[length - 1];
}
void FFTFrame::doInverseFFT(float* data)
{
unsigned length = unpackedFFTWDataSize(fftSize());
float* realData = this->realData();
float* imagData = this->imagData();
// Move the Nyquist component to the location expected by FFTW.
realData[length - 1] = imagData[0];
imagData[length - 1] = 0;
imagData[0] = 0;
fftwf_execute_split_dft_c2r(m_backwardPlan, realData, imagData, data);
// Restore the original scaling of the time domain data.
// FIXME: if we change the definition of FFTFrame to eliminate the
// scale factor then this code will need to change. Also, if this
// loop turns out to be hot then we should use SSE or other
// intrinsics to accelerate it.
float scaleFactor = 1.0 / (2.0 * fftSize());
unsigned n = fftSize();
for (unsigned i = 0; i < n; ++i)
data[i] *= scaleFactor;
// Move the Nyquist component back to the location expected by the
// FFTFrame API.
imagData[0] = realData[length - 1];
}
void FFTFrame::initialize()
{
if (!fftwForwardPlans) {
fftwForwardPlans = new fftwf_plan[kMaxFFTPow2Size];
fftwBackwardPlans = new fftwf_plan[kMaxFFTPow2Size];
for (int i = 0; i < kMaxFFTPow2Size; ++i) {
fftwForwardPlans[i] = 0;
fftwBackwardPlans[i] = 0;
}
}
if (!s_planLock)
s_planLock = new Mutex();
}
void FFTFrame::cleanup()
{
if (!fftwForwardPlans)
return;
for (int i = 0; i < kMaxFFTPow2Size; ++i) {
if (fftwForwardPlans[i])
fftwf_destroy_plan(fftwForwardPlans[i]);
if (fftwBackwardPlans[i])
fftwf_destroy_plan(fftwBackwardPlans[i]);
}
delete[] fftwForwardPlans;
delete[] fftwBackwardPlans;
fftwForwardPlans = 0;
fftwBackwardPlans = 0;
delete s_planLock;
s_planLock = 0;
}
float* FFTFrame::realData() const
{
return const_cast<float*>(m_data.data());
}
float* FFTFrame::imagData() const
{
// Imaginary data is stored following the real data with enough padding for 16-byte alignment.
return const_cast<float*>(realData() + unpackedFFTWDataSize(fftSize()) + 3);
}
fftwf_plan FFTFrame::fftwPlanForSize(unsigned fftSize, Direction direction,
float* data1, float* data2, float* data3)
{
// initialize() must be called first.
ASSERT(fftwForwardPlans);
if (!fftwForwardPlans)
return 0;
ASSERT(s_planLock);
if (!s_planLock)
return 0;
MutexLocker locker(*s_planLock);
ASSERT(fftSize);
int pow2size = static_cast<int>(log2(fftSize));
ASSERT(pow2size < kMaxFFTPow2Size);
fftwf_plan* plans = (direction == Forward) ? fftwForwardPlans : fftwBackwardPlans;
if (!plans[pow2size]) {
fftwf_iodim dimension;
dimension.n = fftSize;
dimension.is = 1;
dimension.os = 1;
// For the time being, we do not take the input data into
// account when choosing a plan, so that we can most easily
// reuse plans with different input data.
// FIXME: allocate input and output data inside this class to
// be able to take advantage of alignment and SIMD optimizations.
unsigned flags = FFTW_ESTIMATE | FFTW_PRESERVE_INPUT | FFTW_UNALIGNED;
switch (direction) {
case Forward:
plans[pow2size] = fftwf_plan_guru_split_dft_r2c(1, &dimension, 0, 0,
data1, data2, data3,
flags);
break;
case Backward:
plans[pow2size] = fftwf_plan_guru_split_dft_c2r(1, &dimension, 0, 0,
data1, data2, data3,
flags);
break;
}
}
ASSERT(plans[pow2size]);
return plans[pow2size];
}
} // namespace WebCore
#endif // !OS(DARWIN) && USE(WEBAUDIO_FFTW)
#endif // ENABLE(WEB_AUDIO)
|