1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177
|
/*
* Copyright (C) 2009 Apple Inc. All rights reserved.
*
* Redistribution and use in source and binary forms, with or without
* modification, are permitted provided that the following conditions
* are met:
* 1. Redistributions of source code must retain the above copyright
* notice, this list of conditions and the following disclaimer.
* 2. Redistributions in binary form must reproduce the above copyright
* notice, this list of conditions and the following disclaimer in the
* documentation and/or other materials provided with the distribution.
*
* THIS SOFTWARE IS PROVIDED BY APPLE COMPUTER, INC. ``AS IS'' AND ANY
* EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
* IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR
* PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL APPLE COMPUTER, INC. OR
* CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL,
* EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO,
* PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR
* PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY
* OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT
* (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE
* OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
*/
#include "config.h"
#include "TransformState.h"
#include <wtf/PassOwnPtr.h>
namespace WebCore {
void TransformState::move(int x, int y, TransformAccumulation accumulate)
{
if (m_accumulatingTransform && m_accumulatedTransform) {
// If we're accumulating into an existing transform, apply the translation.
if (m_direction == ApplyTransformDirection)
m_accumulatedTransform->translateRight(x, y);
else
m_accumulatedTransform->translate(-x, -y); // We're unapplying, so negate
// Then flatten if necessary.
if (accumulate == FlattenTransform)
flatten();
} else {
// Just move the point and, optionally, the quad.
m_lastPlanarPoint.move(x, y);
if (m_mapQuad)
m_lastPlanarQuad.move(x, y);
}
m_accumulatingTransform = accumulate == AccumulateTransform;
}
// FIXME: We transform AffineTransform to TransformationMatrix. This is rather inefficient.
void TransformState::applyTransform(const AffineTransform& transformFromContainer, TransformAccumulation accumulate)
{
applyTransform(transformFromContainer.toTransformationMatrix(), accumulate);
}
void TransformState::applyTransform(const TransformationMatrix& transformFromContainer, TransformAccumulation accumulate)
{
// If we have an accumulated transform from last time, multiply in this transform
if (m_accumulatedTransform) {
if (m_direction == ApplyTransformDirection)
m_accumulatedTransform = adoptPtr(new TransformationMatrix(transformFromContainer * *m_accumulatedTransform));
else
m_accumulatedTransform->multiply(transformFromContainer);
} else if (accumulate == AccumulateTransform) {
// Make one if we started to accumulate
m_accumulatedTransform = adoptPtr(new TransformationMatrix(transformFromContainer));
}
if (accumulate == FlattenTransform) {
const TransformationMatrix* finalTransform = m_accumulatedTransform ? m_accumulatedTransform.get() : &transformFromContainer;
flattenWithTransform(*finalTransform);
}
m_accumulatingTransform = accumulate == AccumulateTransform;
}
void TransformState::flatten()
{
if (!m_accumulatedTransform) {
m_accumulatingTransform = false;
return;
}
flattenWithTransform(*m_accumulatedTransform);
}
FloatPoint TransformState::mappedPoint() const
{
if (!m_accumulatedTransform)
return m_lastPlanarPoint;
if (m_direction == ApplyTransformDirection)
return m_accumulatedTransform->mapPoint(m_lastPlanarPoint);
return m_accumulatedTransform->inverse().projectPoint(m_lastPlanarPoint);
}
FloatQuad TransformState::mappedQuad() const
{
if (!m_accumulatedTransform)
return m_lastPlanarQuad;
if (m_direction == ApplyTransformDirection)
return m_accumulatedTransform->mapQuad(m_lastPlanarQuad);
return m_accumulatedTransform->inverse().projectQuad(m_lastPlanarQuad);
}
void TransformState::flattenWithTransform(const TransformationMatrix& t)
{
if (m_direction == ApplyTransformDirection) {
m_lastPlanarPoint = t.mapPoint(m_lastPlanarPoint);
if (m_mapQuad)
m_lastPlanarQuad = t.mapQuad(m_lastPlanarQuad);
} else {
TransformationMatrix inverseTransform = t.inverse();
m_lastPlanarPoint = inverseTransform.projectPoint(m_lastPlanarPoint);
if (m_mapQuad)
m_lastPlanarQuad = inverseTransform.projectQuad(m_lastPlanarQuad);
}
// We could throw away m_accumulatedTransform if we wanted to here, but that
// would cause thrash when traversing hierarchies with alternating
// preserve-3d and flat elements.
if (m_accumulatedTransform)
m_accumulatedTransform->makeIdentity();
m_accumulatingTransform = false;
}
// HitTestingTransformState methods
void HitTestingTransformState::translate(int x, int y, TransformAccumulation accumulate)
{
m_accumulatedTransform.translate(x, y);
if (accumulate == FlattenTransform)
flattenWithTransform(m_accumulatedTransform);
m_accumulatingTransform = accumulate == AccumulateTransform;
}
void HitTestingTransformState::applyTransform(const TransformationMatrix& transformFromContainer, TransformAccumulation accumulate)
{
m_accumulatedTransform.multiply(transformFromContainer);
if (accumulate == FlattenTransform)
flattenWithTransform(m_accumulatedTransform);
m_accumulatingTransform = accumulate == AccumulateTransform;
}
void HitTestingTransformState::flatten()
{
flattenWithTransform(m_accumulatedTransform);
}
void HitTestingTransformState::flattenWithTransform(const TransformationMatrix& t)
{
TransformationMatrix inverseTransform = t.inverse();
m_lastPlanarPoint = inverseTransform.projectPoint(m_lastPlanarPoint);
m_lastPlanarQuad = inverseTransform.projectQuad(m_lastPlanarQuad);
m_accumulatedTransform.makeIdentity();
m_accumulatingTransform = false;
}
FloatPoint HitTestingTransformState::mappedPoint() const
{
return m_accumulatedTransform.inverse().projectPoint(m_lastPlanarPoint);
}
FloatQuad HitTestingTransformState::mappedQuad() const
{
return m_accumulatedTransform.inverse().projectQuad(m_lastPlanarQuad);
}
} // namespace WebCore
|