1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271
|
/*
** License Applicability. Except to the extent portions of this file are
** made subject to an alternative license as permitted in the SGI Free
** Software License B, Version 1.1 (the "License"), the contents of this
** file are subject only to the provisions of the License. You may not use
** this file except in compliance with the License. You may obtain a copy
** of the License at Silicon Graphics, Inc., attn: Legal Services, 1600
** Amphitheatre Parkway, Mountain View, CA 94043-1351, or at:
**
** http://oss.sgi.com/projects/FreeB
**
** Note that, as provided in the License, the Software is distributed on an
** "AS IS" basis, with ALL EXPRESS AND IMPLIED WARRANTIES AND CONDITIONS
** DISCLAIMED, INCLUDING, WITHOUT LIMITATION, ANY IMPLIED WARRANTIES AND
** CONDITIONS OF MERCHANTABILITY, SATISFACTORY QUALITY, FITNESS FOR A
** PARTICULAR PURPOSE, AND NON-INFRINGEMENT.
**
** Original Code. The Original Code is: OpenGL Sample Implementation,
** Version 1.2.1, released January 26, 2000, developed by Silicon Graphics,
** Inc. The Original Code is Copyright (c) 1991-2000 Silicon Graphics, Inc.
** Copyright in any portions created by third parties is as indicated
** elsewhere herein. All Rights Reserved.
**
** Additional Notice Provisions: The application programming interfaces
** established by SGI in conjunction with the Original Code are The
** OpenGL(R) Graphics System: A Specification (Version 1.2.1), released
** April 1, 1999; The OpenGL(R) Graphics System Utility Library (Version
** 1.3), released November 4, 1998; and OpenGL(R) Graphics with the X
** Window System(R) (Version 1.3), released October 19, 1998. This software
** was created using the OpenGL(R) version 1.2.1 Sample Implementation
** published by SGI, but has not been independently verified as being
** compliant with the OpenGL(R) version 1.2.1 Specification.
**
*/
/*
** Author: Eric Veach, July 1994.
**
** $Date$ $Revision$
** $Header: //depot/main/gfx/lib/glu/libtess/geom.c#5 $
*/
#include "gluos.h"
#include <assert.h>
#include "mesh.h"
#include "geom.h"
int __gl_vertLeq( GLUvertex *u, GLUvertex *v )
{
/* Returns TRUE if u is lexicographically <= v. */
return VertLeq( u, v );
}
GLdouble __gl_edgeEval( GLUvertex *u, GLUvertex *v, GLUvertex *w )
{
/* Given three vertices u,v,w such that VertLeq(u,v) && VertLeq(v,w),
* evaluates the t-coord of the edge uw at the s-coord of the vertex v.
* Returns v->t - (uw)(v->s), ie. the signed distance from uw to v.
* If uw is vertical (and thus passes thru v), the result is zero.
*
* The calculation is extremely accurate and stable, even when v
* is very close to u or w. In particular if we set v->t = 0 and
* let r be the negated result (this evaluates (uw)(v->s)), then
* r is guaranteed to satisfy MIN(u->t,w->t) <= r <= MAX(u->t,w->t).
*/
GLdouble gapL, gapR;
assert( VertLeq( u, v ) && VertLeq( v, w ));
gapL = v->s - u->s;
gapR = w->s - v->s;
if( gapL + gapR > 0 ) {
if( gapL < gapR ) {
return (v->t - u->t) + (u->t - w->t) * (gapL / (gapL + gapR));
} else {
return (v->t - w->t) + (w->t - u->t) * (gapR / (gapL + gapR));
}
}
/* vertical line */
return 0;
}
GLdouble __gl_edgeSign( GLUvertex *u, GLUvertex *v, GLUvertex *w )
{
/* Returns a number whose sign matches EdgeEval(u,v,w) but which
* is cheaper to evaluate. Returns > 0, == 0 , or < 0
* as v is above, on, or below the edge uw.
*/
GLdouble gapL, gapR;
assert( VertLeq( u, v ) && VertLeq( v, w ));
gapL = v->s - u->s;
gapR = w->s - v->s;
if( gapL + gapR > 0 ) {
return (v->t - w->t) * gapL + (v->t - u->t) * gapR;
}
/* vertical line */
return 0;
}
/***********************************************************************
* Define versions of EdgeSign, EdgeEval with s and t transposed.
*/
GLdouble __gl_transEval( GLUvertex *u, GLUvertex *v, GLUvertex *w )
{
/* Given three vertices u,v,w such that TransLeq(u,v) && TransLeq(v,w),
* evaluates the t-coord of the edge uw at the s-coord of the vertex v.
* Returns v->s - (uw)(v->t), ie. the signed distance from uw to v.
* If uw is vertical (and thus passes thru v), the result is zero.
*
* The calculation is extremely accurate and stable, even when v
* is very close to u or w. In particular if we set v->s = 0 and
* let r be the negated result (this evaluates (uw)(v->t)), then
* r is guaranteed to satisfy MIN(u->s,w->s) <= r <= MAX(u->s,w->s).
*/
GLdouble gapL, gapR;
assert( TransLeq( u, v ) && TransLeq( v, w ));
gapL = v->t - u->t;
gapR = w->t - v->t;
if( gapL + gapR > 0 ) {
if( gapL < gapR ) {
return (v->s - u->s) + (u->s - w->s) * (gapL / (gapL + gapR));
} else {
return (v->s - w->s) + (w->s - u->s) * (gapR / (gapL + gapR));
}
}
/* vertical line */
return 0;
}
GLdouble __gl_transSign( GLUvertex *u, GLUvertex *v, GLUvertex *w )
{
/* Returns a number whose sign matches TransEval(u,v,w) but which
* is cheaper to evaluate. Returns > 0, == 0 , or < 0
* as v is above, on, or below the edge uw.
*/
GLdouble gapL, gapR;
assert( TransLeq( u, v ) && TransLeq( v, w ));
gapL = v->t - u->t;
gapR = w->t - v->t;
if( gapL + gapR > 0 ) {
return (v->s - w->s) * gapL + (v->s - u->s) * gapR;
}
/* vertical line */
return 0;
}
int __gl_vertCCW( GLUvertex *u, GLUvertex *v, GLUvertex *w )
{
/* For almost-degenerate situations, the results are not reliable.
* Unless the floating-point arithmetic can be performed without
* rounding errors, *any* implementation will give incorrect results
* on some degenerate inputs, so the client must have some way to
* handle this situation.
*/
return (u->s*(v->t - w->t) + v->s*(w->t - u->t) + w->s*(u->t - v->t)) >= 0;
}
/* Given parameters a,x,b,y returns the value (b*x+a*y)/(a+b),
* or (x+y)/2 if a==b==0. It requires that a,b >= 0, and enforces
* this in the rare case that one argument is slightly negative.
* The implementation is extremely stable numerically.
* In particular it guarantees that the result r satisfies
* MIN(x,y) <= r <= MAX(x,y), and the results are very accurate
* even when a and b differ greatly in magnitude.
*/
#define RealInterpolate(a,x,b,y) \
(a = (a < 0) ? 0 : a, b = (b < 0) ? 0 : b, \
((a <= b) ? ((b == 0) ? ((x+y) / 2) \
: (x + (y-x) * (a/(a+b)))) \
: (y + (x-y) * (b/(a+b)))))
#ifndef FOR_TRITE_TEST_PROGRAM
#define Interpolate(a,x,b,y) RealInterpolate(a,x,b,y)
#else
/* Claim: the ONLY property the sweep algorithm relies on is that
* MIN(x,y) <= r <= MAX(x,y). This is a nasty way to test that.
*/
#include <stdlib.h>
extern int RandomInterpolate;
GLdouble Interpolate( GLdouble a, GLdouble x, GLdouble b, GLdouble y)
{
printf("*********************%d\n",RandomInterpolate);
if( RandomInterpolate ) {
a = 1.2 * drand48() - 0.1;
a = (a < 0) ? 0 : ((a > 1) ? 1 : a);
b = 1.0 - a;
}
return RealInterpolate(a,x,b,y);
}
#endif
#define Swap(a,b) do { GLUvertex *t = a; a = b; b = t; } while(0)
void __gl_edgeIntersect( GLUvertex *o1, GLUvertex *d1,
GLUvertex *o2, GLUvertex *d2,
GLUvertex *v )
/* Given edges (o1,d1) and (o2,d2), compute their point of intersection.
* The computed point is guaranteed to lie in the intersection of the
* bounding rectangles defined by each edge.
*/
{
GLdouble z1, z2;
/* This is certainly not the most efficient way to find the intersection
* of two line segments, but it is very numerically stable.
*
* Strategy: find the two middle vertices in the VertLeq ordering,
* and interpolate the intersection s-value from these. Then repeat
* using the TransLeq ordering to find the intersection t-value.
*/
if( ! VertLeq( o1, d1 )) { Swap( o1, d1 ); }
if( ! VertLeq( o2, d2 )) { Swap( o2, d2 ); }
if( ! VertLeq( o1, o2 )) { Swap( o1, o2 ); Swap( d1, d2 ); }
if( ! VertLeq( o2, d1 )) {
/* Technically, no intersection -- do our best */
v->s = (o2->s + d1->s) / 2;
} else if( VertLeq( d1, d2 )) {
/* Interpolate between o2 and d1 */
z1 = EdgeEval( o1, o2, d1 );
z2 = EdgeEval( o2, d1, d2 );
if( z1+z2 < 0 ) { z1 = -z1; z2 = -z2; }
v->s = Interpolate( z1, o2->s, z2, d1->s );
} else {
/* Interpolate between o2 and d2 */
z1 = EdgeSign( o1, o2, d1 );
z2 = -EdgeSign( o1, d2, d1 );
if( z1+z2 < 0 ) { z1 = -z1; z2 = -z2; }
v->s = Interpolate( z1, o2->s, z2, d2->s );
}
/* Now repeat the process for t */
if( ! TransLeq( o1, d1 )) { Swap( o1, d1 ); }
if( ! TransLeq( o2, d2 )) { Swap( o2, d2 ); }
if( ! TransLeq( o1, o2 )) { Swap( o1, o2 ); Swap( d1, d2 ); }
if( ! TransLeq( o2, d1 )) {
/* Technically, no intersection -- do our best */
v->t = (o2->t + d1->t) / 2;
} else if( TransLeq( d1, d2 )) {
/* Interpolate between o2 and d1 */
z1 = TransEval( o1, o2, d1 );
z2 = TransEval( o2, d1, d2 );
if( z1+z2 < 0 ) { z1 = -z1; z2 = -z2; }
v->t = Interpolate( z1, o2->t, z2, d1->t );
} else {
/* Interpolate between o2 and d2 */
z1 = TransSign( o1, o2, d1 );
z2 = -TransSign( o1, d2, d1 );
if( z1+z2 < 0 ) { z1 = -z1; z2 = -z2; }
v->t = Interpolate( z1, o2->t, z2, d2->t );
}
}
|