1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208
|
/*
** License Applicability. Except to the extent portions of this file are
** made subject to an alternative license as permitted in the SGI Free
** Software License B, Version 1.1 (the "License"), the contents of this
** file are subject only to the provisions of the License. You may not use
** this file except in compliance with the License. You may obtain a copy
** of the License at Silicon Graphics, Inc., attn: Legal Services, 1600
** Amphitheatre Parkway, Mountain View, CA 94043-1351, or at:
**
** http://oss.sgi.com/projects/FreeB
**
** Note that, as provided in the License, the Software is distributed on an
** "AS IS" basis, with ALL EXPRESS AND IMPLIED WARRANTIES AND CONDITIONS
** DISCLAIMED, INCLUDING, WITHOUT LIMITATION, ANY IMPLIED WARRANTIES AND
** CONDITIONS OF MERCHANTABILITY, SATISFACTORY QUALITY, FITNESS FOR A
** PARTICULAR PURPOSE, AND NON-INFRINGEMENT.
**
** Original Code. The Original Code is: OpenGL Sample Implementation,
** Version 1.2.1, released January 26, 2000, developed by Silicon Graphics,
** Inc. The Original Code is Copyright (c) 1991-2000 Silicon Graphics, Inc.
** Copyright in any portions created by third parties is as indicated
** elsewhere herein. All Rights Reserved.
**
** Additional Notice Provisions: The application programming interfaces
** established by SGI in conjunction with the Original Code are The
** OpenGL(R) Graphics System: A Specification (Version 1.2.1), released
** April 1, 1999; The OpenGL(R) Graphics System Utility Library (Version
** 1.3), released November 4, 1998; and OpenGL(R) Graphics with the X
** Window System(R) (Version 1.3), released October 19, 1998. This software
** was created using the OpenGL(R) version 1.2.1 Sample Implementation
** published by SGI, but has not been independently verified as being
** compliant with the OpenGL(R) version 1.2.1 Specification.
**
*/
/*
** Author: Eric Veach, July 1994.
**
** $Date$ $Revision$
** $Header: //depot/main/gfx/lib/glu/libtess/tessmono.c#5 $
*/
#include "gluos.h"
#include <stdlib.h>
#include "geom.h"
#include "mesh.h"
#include "tessmono.h"
#include <assert.h>
#define AddWinding(eDst,eSrc) (eDst->winding += eSrc->winding, \
eDst->Sym->winding += eSrc->Sym->winding)
/* __gl_meshTessellateMonoRegion( face ) tessellates a monotone region
* (what else would it do??) The region must consist of a single
* loop of half-edges (see mesh.h) oriented CCW. "Monotone" in this
* case means that any vertical line intersects the interior of the
* region in a single interval.
*
* Tessellation consists of adding interior edges (actually pairs of
* half-edges), to split the region into non-overlapping triangles.
*
* The basic idea is explained in Preparata and Shamos (which I don''t
* have handy right now), although their implementation is more
* complicated than this one. The are two edge chains, an upper chain
* and a lower chain. We process all vertices from both chains in order,
* from right to left.
*
* The algorithm ensures that the following invariant holds after each
* vertex is processed: the untessellated region consists of two
* chains, where one chain (say the upper) is a single edge, and
* the other chain is concave. The left vertex of the single edge
* is always to the left of all vertices in the concave chain.
*
* Each step consists of adding the rightmost unprocessed vertex to one
* of the two chains, and forming a fan of triangles from the rightmost
* of two chain endpoints. Determining whether we can add each triangle
* to the fan is a simple orientation test. By making the fan as large
* as possible, we restore the invariant (check it yourself).
*/
int __gl_meshTessellateMonoRegion( GLUface *face )
{
GLUhalfEdge *up, *lo;
/* All edges are oriented CCW around the boundary of the region.
* First, find the half-edge whose origin vertex is rightmost.
* Since the sweep goes from left to right, face->anEdge should
* be close to the edge we want.
*/
up = face->anEdge;
assert( up->Lnext != up && up->Lnext->Lnext != up );
for( ; VertLeq( up->Dst, up->Org ); up = up->Lprev )
;
for( ; VertLeq( up->Org, up->Dst ); up = up->Lnext )
;
lo = up->Lprev;
while( up->Lnext != lo ) {
if( VertLeq( up->Dst, lo->Org )) {
/* up->Dst is on the left. It is safe to form triangles from lo->Org.
* The EdgeGoesLeft test guarantees progress even when some triangles
* are CW, given that the upper and lower chains are truly monotone.
*/
while( lo->Lnext != up && (EdgeGoesLeft( lo->Lnext )
|| EdgeSign( lo->Org, lo->Dst, lo->Lnext->Dst ) <= 0 )) {
GLUhalfEdge *tempHalfEdge= __gl_meshConnect( lo->Lnext, lo );
if (tempHalfEdge == NULL) return 0;
lo = tempHalfEdge->Sym;
}
lo = lo->Lprev;
} else {
/* lo->Org is on the left. We can make CCW triangles from up->Dst. */
while( lo->Lnext != up && (EdgeGoesRight( up->Lprev )
|| EdgeSign( up->Dst, up->Org, up->Lprev->Org ) >= 0 )) {
GLUhalfEdge *tempHalfEdge= __gl_meshConnect( up, up->Lprev );
if (tempHalfEdge == NULL) return 0;
up = tempHalfEdge->Sym;
}
up = up->Lnext;
}
}
/* Now lo->Org == up->Dst == the leftmost vertex. The remaining region
* can be tessellated in a fan from this leftmost vertex.
*/
assert( lo->Lnext != up );
while( lo->Lnext->Lnext != up ) {
GLUhalfEdge *tempHalfEdge= __gl_meshConnect( lo->Lnext, lo );
if (tempHalfEdge == NULL) return 0;
lo = tempHalfEdge->Sym;
}
return 1;
}
/* __gl_meshTessellateInterior( mesh ) tessellates each region of
* the mesh which is marked "inside" the polygon. Each such region
* must be monotone.
*/
int __gl_meshTessellateInterior( GLUmesh *mesh )
{
GLUface *f, *next;
/*LINTED*/
for( f = mesh->fHead.next; f != &mesh->fHead; f = next ) {
/* Make sure we don''t try to tessellate the new triangles. */
next = f->next;
if( f->inside ) {
if ( !__gl_meshTessellateMonoRegion( f ) ) return 0;
}
}
return 1;
}
/* __gl_meshDiscardExterior( mesh ) zaps (ie. sets to NULL) all faces
* which are not marked "inside" the polygon. Since further mesh operations
* on NULL faces are not allowed, the main purpose is to clean up the
* mesh so that exterior loops are not represented in the data structure.
*/
void __gl_meshDiscardExterior( GLUmesh *mesh )
{
GLUface *f, *next;
/*LINTED*/
for( f = mesh->fHead.next; f != &mesh->fHead; f = next ) {
/* Since f will be destroyed, save its next pointer. */
next = f->next;
if( ! f->inside ) {
__gl_meshZapFace( f );
}
}
}
#define MARKED_FOR_DELETION 0x7fffffff
/* __gl_meshSetWindingNumber( mesh, value, keepOnlyBoundary ) resets the
* winding numbers on all edges so that regions marked "inside" the
* polygon have a winding number of "value", and regions outside
* have a winding number of 0.
*
* If keepOnlyBoundary is TRUE, it also deletes all edges which do not
* separate an interior region from an exterior one.
*/
int __gl_meshSetWindingNumber( GLUmesh *mesh, int value,
GLboolean keepOnlyBoundary )
{
GLUhalfEdge *e, *eNext;
for( e = mesh->eHead.next; e != &mesh->eHead; e = eNext ) {
eNext = e->next;
if( e->Rface->inside != e->Lface->inside ) {
/* This is a boundary edge (one side is interior, one is exterior). */
e->winding = (e->Lface->inside) ? value : -value;
} else {
/* Both regions are interior, or both are exterior. */
if( ! keepOnlyBoundary ) {
e->winding = 0;
} else {
if ( !__gl_meshDelete( e ) ) return 0;
}
}
}
return 1;
}
|