1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515
|
/*
* Copyright (C) 2009 Google Inc. All rights reserved.
*
* Redistribution and use in source and binary forms, with or without
* modification, are permitted provided that the following conditions are
* met:
*
* * Redistributions of source code must retain the above copyright
* notice, this list of conditions and the following disclaimer.
* * Redistributions in binary form must reproduce the above
* copyright notice, this list of conditions and the following disclaimer
* in the documentation and/or other materials provided with the
* distribution.
* * Neither the name of Google Inc. nor the names of its
* contributors may be used to endorse or promote products derived from
* this software without specific prior written permission.
*
* THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS
* "AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT
* LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR
* A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT
* OWNER OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL,
* SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT
* LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE,
* DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY
* THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT
* (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE
* OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
*/
#include "config.h"
#include <windows.h>
#include "AffineTransform.h"
#include "GraphicsContext.h"
#include "ImageBuffer.h"
#include "PlatformContextSkia.h"
#include "SimpleFontData.h"
#include "TransparencyWin.h"
#include "SkColorPriv.h"
#include "skia/ext/platform_canvas.h"
namespace WebCore {
namespace {
// The maximum size in pixels of the buffer we'll keep around for drawing text
// into. Buffers larger than this will be destroyed when we're done with them.
const int maxCachedBufferPixelSize = 65536;
inline const SkBitmap& bitmapForContext(const GraphicsContext& context)
{
return context.platformContext()->layerBitmap();
}
void compositeToCopy(const GraphicsContext& sourceLayers,
GraphicsContext& destContext,
const AffineTransform& matrix)
{
// Make a list of all devices. The iterator goes top-down, and we want
// bottom-up. Note that each layer can also have an offset in canvas
// coordinates, which is the (x, y) position.
struct DeviceInfo {
DeviceInfo(SkDevice* d, int lx, int ly)
: device(d)
, x(lx)
, y(ly) {}
SkDevice* device;
int x;
int y;
};
Vector<DeviceInfo> devices;
SkCanvas* sourceCanvas = sourceLayers.platformContext()->canvas();
SkCanvas::LayerIter iter(sourceCanvas, false);
while (!iter.done()) {
devices.append(DeviceInfo(iter.device(), iter.x(), iter.y()));
iter.next();
}
// Create a temporary canvas for the compositing into the destination.
SkBitmap* destBmp = const_cast<SkBitmap*>(&bitmapForContext(destContext));
SkCanvas destCanvas(*destBmp);
destCanvas.setMatrix(matrix);
for (int i = devices.size() - 1; i >= 0; i--) {
const SkBitmap& srcBmp = devices[i].device->accessBitmap(false);
SkRect destRect;
destRect.fLeft = devices[i].x;
destRect.fTop = devices[i].y;
destRect.fRight = destRect.fLeft + srcBmp.width();
destRect.fBottom = destRect.fTop + srcBmp.height();
destCanvas.drawBitmapRect(srcBmp, 0, destRect);
}
}
} // namespace
// If either of these pointers is non-null, both must be valid and point to
// bitmaps of the same size.
class TransparencyWin::OwnedBuffers {
public:
OwnedBuffers(const IntSize& size, bool needReferenceBuffer)
{
m_destBitmap = ImageBuffer::create(size, 1);
if (needReferenceBuffer) {
m_referenceBitmap.setConfig(SkBitmap::kARGB_8888_Config, size.width(), size.height());
m_referenceBitmap.allocPixels();
m_referenceBitmap.eraseARGB(0, 0, 0, 0);
}
}
ImageBuffer* destBitmap() { return m_destBitmap.get(); }
// This bitmap will be empty if you don't specify needReferenceBuffer to the
// constructor.
SkBitmap* referenceBitmap() { return &m_referenceBitmap; }
// Returns whether the current layer will fix a buffer of the given size.
bool canHandleSize(const IntSize& size) const
{
return m_destBitmap->internalSize().width() >= size.width() && m_destBitmap->internalSize().height() >= size.height();
}
private:
// The destination bitmap we're drawing into.
OwnPtr<ImageBuffer> m_destBitmap;
// This could be an ImageBuffer but this is an optimization. Since this is
// only ever used as a reference, we don't need to make a full
// PlatformCanvas using Skia on Windows. Just allocating a regular SkBitmap
// is much faster since it's just a Malloc rather than a GDI call.
SkBitmap m_referenceBitmap;
};
TransparencyWin::OwnedBuffers* TransparencyWin::m_cachedBuffers = 0;
TransparencyWin::TransparencyWin()
: m_destContext(0)
, m_orgTransform()
, m_layerMode(NoLayer)
, m_transformMode(KeepTransform)
, m_drawContext(0)
, m_savedOnDrawContext(false)
, m_layerBuffer(0)
, m_referenceBitmap(0)
, m_validLayer(false)
{
}
TransparencyWin::~TransparencyWin()
{
// This should be false, since calling composite() is mandatory.
ASSERT(!m_savedOnDrawContext);
}
void TransparencyWin::composite()
{
// Matches the save() in initializeNewTextContext (or the constructor for
// SCALE) to put the context back into the same state we found it.
if (m_savedOnDrawContext) {
m_drawContext->restore();
m_savedOnDrawContext = false;
}
switch (m_layerMode) {
case NoLayer:
break;
case OpaqueCompositeLayer:
case WhiteLayer:
compositeOpaqueComposite();
break;
case TextComposite:
compositeTextComposite();
break;
}
}
void TransparencyWin::init(GraphicsContext* dest,
LayerMode layerMode,
TransformMode transformMode,
const IntRect& region)
{
m_destContext = dest;
m_orgTransform = dest->getCTM();
m_layerMode = layerMode;
m_transformMode = transformMode;
m_sourceRect = region;
computeLayerSize();
setupLayer();
setupTransform(region);
}
void TransparencyWin::computeLayerSize()
{
if (m_transformMode == Untransform) {
// The meaning of the "transformed" source rect is a little ambigous
// here. The rest of the code doesn't care about it in the Untransform
// case since we're using our own happy coordinate system. So we set it
// to be the source rect since that matches how the code below actually
// uses the variable: to determine how to translate things to account
// for the offset of the layer.
m_transformedSourceRect = m_sourceRect;
} else if (m_transformMode == KeepTransform && m_layerMode != TextComposite) {
// FIXME: support clipping for other modes
IntRect clippedSourceRect = m_sourceRect;
SkRect clipBounds;
if (m_destContext->platformContext()->getClipBounds(&clipBounds)) {
FloatRect clipRect(clipBounds.left(), clipBounds.top(), clipBounds.width(), clipBounds.height());
clippedSourceRect.intersect(enclosingIntRect(clipRect));
}
m_transformedSourceRect = m_orgTransform.mapRect(clippedSourceRect);
} else
m_transformedSourceRect = m_orgTransform.mapRect(m_sourceRect);
m_layerSize = IntSize(m_transformedSourceRect.width(), m_transformedSourceRect.height());
}
void TransparencyWin::setupLayer()
{
switch (m_layerMode) {
case NoLayer:
setupLayerForNoLayer();
break;
case OpaqueCompositeLayer:
setupLayerForOpaqueCompositeLayer();
break;
case TextComposite:
setupLayerForTextComposite();
break;
case WhiteLayer:
setupLayerForWhiteLayer();
break;
}
}
void TransparencyWin::setupLayerForNoLayer()
{
m_drawContext = m_destContext; // Draw to the source context.
m_validLayer = true;
}
void TransparencyWin::setupLayerForOpaqueCompositeLayer()
{
initializeNewContext();
if (!m_validLayer)
return;
AffineTransform mapping;
mapping.translate(-m_transformedSourceRect.x(), -m_transformedSourceRect.y());
if (m_transformMode == Untransform){
// Compute the inverse mapping from the canvas space to the
// coordinate space of our bitmap.
mapping *= m_orgTransform.inverse();
}
compositeToCopy(*m_destContext, *m_drawContext, mapping);
// Save the reference layer so we can tell what changed.
SkCanvas referenceCanvas(*m_referenceBitmap);
referenceCanvas.drawBitmap(bitmapForContext(*m_drawContext), 0, 0);
// Layer rect represents the part of the original layer.
}
void TransparencyWin::setupLayerForTextComposite()
{
ASSERT(m_transformMode == KeepTransform);
// Fall through to filling with white.
setupLayerForWhiteLayer();
}
void TransparencyWin::setupLayerForWhiteLayer()
{
initializeNewContext();
if (!m_validLayer)
return;
m_drawContext->fillRect(IntRect(IntPoint(0, 0), m_layerSize), Color::white, ColorSpaceDeviceRGB);
// Layer rect represents the part of the original layer.
}
void TransparencyWin::setupTransform(const IntRect& region)
{
switch (m_transformMode) {
case KeepTransform:
setupTransformForKeepTransform(region);
break;
case Untransform:
setupTransformForUntransform();
break;
case ScaleTransform:
setupTransformForScaleTransform();
break;
}
}
void TransparencyWin::setupTransformForKeepTransform(const IntRect& region)
{
if (!m_validLayer)
return;
if (m_layerMode != NoLayer) {
// Need to save things since we're modifying the transform.
m_drawContext->save();
m_savedOnDrawContext = true;
// Account for the fact that the layer may be offset from the
// original. This only happens when we create a layer that has the
// same coordinate space as the parent.
AffineTransform xform;
xform.translate(-m_transformedSourceRect.x(), -m_transformedSourceRect.y());
// We're making a layer, so apply the old transform to the new one
// so it's maintained. We know the new layer has the identity
// transform now, we we can just multiply it.
xform *= m_orgTransform;
m_drawContext->concatCTM(xform);
}
m_drawRect = m_sourceRect;
}
void TransparencyWin::setupTransformForUntransform()
{
ASSERT(m_layerMode != NoLayer);
// We now have a new layer with the identity transform, which is the
// Untransformed space we'll use for drawing.
m_drawRect = IntRect(IntPoint(0, 0), m_layerSize);
}
void TransparencyWin::setupTransformForScaleTransform()
{
if (!m_validLayer)
return;
if (m_layerMode == NoLayer) {
// Need to save things since we're modifying the layer.
m_drawContext->save();
m_savedOnDrawContext = true;
// Undo the transform on the current layer when we're re-using the
// current one.
m_drawContext->concatCTM(m_drawContext->getCTM().inverse());
// We're drawing to the original layer with just a different size.
m_drawRect = m_transformedSourceRect;
} else {
// Just go ahead and use the layer's coordinate space to draw into.
// It will have the scaled size, and an identity transform loaded.
m_drawRect = IntRect(IntPoint(0, 0), m_layerSize);
}
}
void TransparencyWin::setTextCompositeColor(Color color)
{
m_textCompositeColor = color;
}
void TransparencyWin::initializeNewContext()
{
int pixelSize = m_layerSize.width() * m_layerSize.height();
if (pixelSize <= 0)
return;
if (pixelSize > maxCachedBufferPixelSize) {
// Create a 1-off buffer for drawing into. We only need the reference
// buffer if we're making an OpaqueCompositeLayer.
bool needReferenceBitmap = m_layerMode == OpaqueCompositeLayer;
m_ownedBuffers = adoptPtr(new OwnedBuffers(m_layerSize, needReferenceBitmap));
m_layerBuffer = m_ownedBuffers->destBitmap();
if (!m_layerBuffer)
return;
m_drawContext = m_layerBuffer->context();
if (needReferenceBitmap) {
m_referenceBitmap = m_ownedBuffers->referenceBitmap();
if (!m_referenceBitmap || !m_referenceBitmap->getPixels())
return;
}
m_validLayer = true;
return;
}
if (m_cachedBuffers && m_cachedBuffers->canHandleSize(m_layerSize)) {
// We can re-use the existing buffer. We don't need to clear it since
// all layer modes will clear it in their initialization.
m_layerBuffer = m_cachedBuffers->destBitmap();
m_drawContext = m_cachedBuffers->destBitmap()->context();
bitmapForContext(*m_drawContext).eraseARGB(0, 0, 0, 0);
m_referenceBitmap = m_cachedBuffers->referenceBitmap();
m_referenceBitmap->eraseARGB(0, 0, 0, 0);
m_validLayer = true;
return;
}
// Create a new cached buffer.
if (m_cachedBuffers)
delete m_cachedBuffers;
m_cachedBuffers = new OwnedBuffers(m_layerSize, true);
m_layerBuffer = m_cachedBuffers->destBitmap();
m_drawContext = m_cachedBuffers->destBitmap()->context();
m_referenceBitmap = m_cachedBuffers->referenceBitmap();
m_validLayer = true;
}
void TransparencyWin::compositeOpaqueComposite()
{
if (!m_validLayer)
return;
PlatformContextSkia* destPlatformContext = m_destContext->platformContext();
destPlatformContext->save();
SkBitmap* bitmap = const_cast<SkBitmap*>(
&bitmapForContext(*m_layerBuffer->context()));
// This function will be called for WhiteLayer as well, which we don't want
// to change.
if (m_layerMode == OpaqueCompositeLayer) {
// Fix up our bitmap, making it contain only the pixels which changed
// and transparent everywhere else.
SkAutoLockPixels sourceLock(*m_referenceBitmap);
SkAutoLockPixels lock(*bitmap);
for (int y = 0; y < bitmap->height(); y++) {
uint32_t* source = m_referenceBitmap->getAddr32(0, y);
uint32_t* dest = bitmap->getAddr32(0, y);
for (int x = 0; x < bitmap->width(); x++) {
// Clear out any pixels that were untouched.
if (dest[x] == source[x])
dest[x] = 0;
else
dest[x] |= (0xFF << SK_A32_SHIFT);
}
}
} else
makeLayerOpaque();
SkRect destRect;
if (m_transformMode != Untransform) {
// We want to use Untransformed space.
//
// Note that we DON'T call m_layerBuffer->image() here. This actually
// makes a copy of the image, which is unnecessary and slow. Instead, we
// just draw the image from inside the destination context.
SkMatrix identity;
identity.reset();
destPlatformContext->setMatrix(identity);
destRect.set(m_transformedSourceRect.x(), m_transformedSourceRect.y(), m_transformedSourceRect.maxX(), m_transformedSourceRect.maxY());
} else
destRect.set(m_sourceRect.x(), m_sourceRect.y(), m_sourceRect.maxX(), m_sourceRect.maxY());
SkPaint paint;
paint.setFilterBitmap(true);
paint.setAntiAlias(true);
// Note that we need to specify the source layer subset, since the bitmap
// may have been cached and it could be larger than what we're using.
SkIRect sourceRect = { 0, 0, m_layerSize.width(), m_layerSize.height() };
destPlatformContext->drawBitmapRect(*bitmap, &sourceRect, destRect, &paint);
destPlatformContext->restore();
}
void TransparencyWin::compositeTextComposite()
{
if (!m_validLayer)
return;
const SkBitmap& bitmap = m_layerBuffer->context()->platformContext()->layerBitmap(PlatformContextSkia::ReadWrite);
SkColor textColor = m_textCompositeColor.rgb();
for (int y = 0; y < m_layerSize.height(); y++) {
uint32_t* row = bitmap.getAddr32(0, y);
for (int x = 0; x < m_layerSize.width(); x++) {
// The alpha is the average of the R, G, and B channels.
int alpha = (SkGetPackedR32(row[x]) + SkGetPackedG32(row[x]) + SkGetPackedB32(row[x])) / 3;
// Apply that alpha to the text color and write the result.
row[x] = SkAlphaMulQ(textColor, SkAlpha255To256(255 - alpha));
}
}
// Now the layer has text with the proper color and opacity.
PlatformContextSkia* destPlatformContext = m_destContext->platformContext();
destPlatformContext->save();
// We want to use Untransformed space (see above)
SkMatrix identity;
identity.reset();
destPlatformContext->setMatrix(identity);
SkRect destRect = { m_transformedSourceRect.x(), m_transformedSourceRect.y(), m_transformedSourceRect.maxX(), m_transformedSourceRect.maxY() };
// Note that we need to specify the source layer subset, since the bitmap
// may have been cached and it could be larger than what we're using.
SkIRect sourceRect = { 0, 0, m_layerSize.width(), m_layerSize.height() };
destPlatformContext->drawBitmapRect(bitmap, &sourceRect, destRect, 0);
destPlatformContext->restore();
}
void TransparencyWin::makeLayerOpaque()
{
if (!m_validLayer)
return;
SkBitmap& bitmap = const_cast<SkBitmap&>(m_drawContext->platformContext()->layerBitmap(PlatformContextSkia::ReadWrite));
for (int y = 0; y < m_layerSize.height(); y++) {
uint32_t* row = bitmap.getAddr32(0, y);
for (int x = 0; x < m_layerSize.width(); x++)
row[x] |= 0xFF000000;
}
}
} // namespace WebCore
|