1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684
|
/*
* Copyright (c) 2008, Google Inc. All rights reserved.
*
* Redistribution and use in source and binary forms, with or without
* modification, are permitted provided that the following conditions are
* met:
*
* * Redistributions of source code must retain the above copyright
* notice, this list of conditions and the following disclaimer.
* * Redistributions in binary form must reproduce the above
* copyright notice, this list of conditions and the following disclaimer
* in the documentation and/or other materials provided with the
* distribution.
* * Neither the name of Google Inc. nor the names of its
* contributors may be used to endorse or promote products derived from
* this software without specific prior written permission.
*
* THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS
* "AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT
* LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR
* A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT
* OWNER OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL,
* SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT
* LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE,
* DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY
* THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT
* (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE
* OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
*/
#include "config.h"
#include "AffineTransform.h"
#include "BitmapImage.h"
#include "BitmapImageSingleFrameSkia.h"
#include "FloatConversion.h"
#include "FloatRect.h"
#include "GraphicsContext.h"
#include "ImageObserver.h"
#include "Logging.h"
#include "NativeImageSkia.h"
#include "PlatformContextSkia.h"
#include "SkBitmap.h"
#include "SkPixelRef.h"
#include "SkRect.h"
#include "SkShader.h"
#include "SkiaUtils.h"
#include "Texture.h"
#include <wtf/text/WTFString.h>
#include "skia/ext/image_operations.h"
#include "skia/ext/platform_canvas.h"
#include <limits>
#include <math.h>
#if PLATFORM(CHROMIUM)
#include "TraceEvent.h"
#endif
namespace WebCore {
// Used by computeResamplingMode to tell how bitmaps should be resampled.
enum ResamplingMode {
// Nearest neighbor resampling. Used when we detect that the page is
// trying to make a pattern by stretching a small bitmap very large.
RESAMPLE_NONE,
// Default skia resampling. Used for large growing of images where high
// quality resampling doesn't get us very much except a slowdown.
RESAMPLE_LINEAR,
// High quality resampling.
RESAMPLE_AWESOME,
};
static ResamplingMode computeResamplingMode(const SkMatrix& matrix, const NativeImageSkia& bitmap, float srcWidth, float srcHeight, float destWidth, float destHeight)
{
// The percent change below which we will not resample. This usually means
// an off-by-one error on the web page, and just doing nearest neighbor
// sampling is usually good enough.
const float kFractionalChangeThreshold = 0.025f;
// Images smaller than this in either direction are considered "small" and
// are not resampled ever (see below).
const int kSmallImageSizeThreshold = 8;
// The amount an image can be stretched in a single direction before we
// say that it is being stretched so much that it must be a line or
// background that doesn't need resampling.
const float kLargeStretch = 3.0f;
// Figure out if we should resample this image. We try to prune out some
// common cases where resampling won't give us anything, since it is much
// slower than drawing stretched.
float diffWidth = fabs(destWidth - srcWidth);
float diffHeight = fabs(destHeight - srcHeight);
bool widthNearlyEqual = diffWidth < std::numeric_limits<float>::epsilon();
bool heightNearlyEqual = diffHeight < std::numeric_limits<float>::epsilon();
// We don't need to resample if the source and destination are the same.
if (widthNearlyEqual && heightNearlyEqual)
return RESAMPLE_NONE;
if (srcWidth <= kSmallImageSizeThreshold
|| srcHeight <= kSmallImageSizeThreshold
|| destWidth <= kSmallImageSizeThreshold
|| destHeight <= kSmallImageSizeThreshold) {
// Never resample small images. These are often used for borders and
// rules (think 1x1 images used to make lines).
return RESAMPLE_NONE;
}
if (srcHeight * kLargeStretch <= destHeight || srcWidth * kLargeStretch <= destWidth) {
// Large image detected.
// Don't resample if it is being stretched a lot in only one direction.
// This is trying to catch cases where somebody has created a border
// (which might be large) and then is stretching it to fill some part
// of the page.
if (widthNearlyEqual || heightNearlyEqual)
return RESAMPLE_NONE;
// The image is growing a lot and in more than one direction. Resampling
// is slow and doesn't give us very much when growing a lot.
return RESAMPLE_LINEAR;
}
if ((diffWidth / srcWidth < kFractionalChangeThreshold)
&& (diffHeight / srcHeight < kFractionalChangeThreshold)) {
// It is disappointingly common on the web for image sizes to be off by
// one or two pixels. We don't bother resampling if the size difference
// is a small fraction of the original size.
return RESAMPLE_NONE;
}
// When the image is not yet done loading, use linear. We don't cache the
// partially resampled images, and as they come in incrementally, it causes
// us to have to resample the whole thing every time.
if (!bitmap.isDataComplete())
return RESAMPLE_LINEAR;
// Everything else gets resampled.
// High quality interpolation only enabled for scaling and translation.
if (!(matrix.getType() & (SkMatrix::kAffine_Mask | SkMatrix::kPerspective_Mask)))
return RESAMPLE_AWESOME;
return RESAMPLE_LINEAR;
}
static ResamplingMode limitResamplingMode(PlatformContextSkia* platformContext, ResamplingMode resampling)
{
switch (platformContext->interpolationQuality()) {
case InterpolationNone:
return RESAMPLE_NONE;
case InterpolationMedium:
// For now we treat InterpolationMedium and InterpolationLow the same.
case InterpolationLow:
if (resampling == RESAMPLE_AWESOME)
return RESAMPLE_LINEAR;
break;
case InterpolationHigh:
case InterpolationDefault:
break;
}
return resampling;
}
// Return true if the rectangle is aligned to integer boundaries.
// See comments for computeBitmapDrawRects() for how this is used.
static bool areBoundariesIntegerAligned(const SkRect& rect)
{
// Value is 1.19209e-007. This is the tolerance threshold.
const float epsilon = std::numeric_limits<float>::epsilon();
SkIRect roundedRect = roundedIntRect(rect);
return fabs(rect.x() - roundedRect.x()) < epsilon
&& fabs(rect.y() - roundedRect.y()) < epsilon
&& fabs(rect.right() - roundedRect.right()) < epsilon
&& fabs(rect.bottom() - roundedRect.bottom()) < epsilon;
}
// FIXME: Remove this code when SkCanvas accepts SkRect as source rectangle.
// See crbug.com/117597 for background.
//
// WebKit wants to draw a sub-rectangle (FloatRect) in a bitmap and scale it to
// another FloatRect. However Skia only allows bitmap to be addressed by a
// IntRect. This function computes the appropriate IntRect that encloses the
// source rectangle and the corresponding enclosing destination rectangle,
// while maintaining the scale factor.
//
// |srcRect| is the source rectangle in the bitmap. Return true if fancy
// alignment is required. User of this function needs to clip to |dstRect|.
// Return false if clipping is not needed.
//
// |dstRect| is the input rectangle that |srcRect| is scaled to.
//
// |outSrcRect| and |outDstRect| are the corresponding output rectangles.
//
// ALGORITHM
//
// The objective is to (a) find an enclosing IntRect for the source rectangle
// and (b) the corresponding FloatRect in destination space.
//
// These are the steps performed:
//
// 1. IntRect enclosingSrcRect = enclosingIntRect(srcRect)
//
// Compute the enclosing IntRect for |srcRect|. This ensures the bitmap
// image is addressed with integer boundaries.
//
// 2. FloatRect enclosingDestRect = mapSrcToDest(enclosingSrcRect)
//
// Map the enclosing source rectangle to destination coordinate space.
//
// The output will be enclosingSrcRect and enclosingDestRect from the
// algorithm above.
static bool computeBitmapDrawRects(const SkISize& bitmapSize, const SkRect& srcRect, const SkRect& dstRect, SkIRect* outSrcRect, SkRect* outDstRect)
{
if (areBoundariesIntegerAligned(srcRect)) {
*outSrcRect = roundedIntRect(srcRect);
*outDstRect = dstRect;
return false;
}
SkIRect bitmapRect = SkIRect::MakeSize(bitmapSize);
SkIRect enclosingSrcRect = enclosingIntRect(srcRect);
enclosingSrcRect.intersect(bitmapRect); // Clip to bitmap rectangle.
SkRect enclosingDstRect;
enclosingDstRect.set(enclosingSrcRect);
SkMatrix transform;
transform.setRectToRect(srcRect, dstRect, SkMatrix::kFill_ScaleToFit);
transform.mapRect(&enclosingDstRect);
*outSrcRect = enclosingSrcRect;
*outDstRect = enclosingDstRect;
return true;
}
// This function is used to scale an image and extract a scaled fragment.
//
// ALGORITHM
//
// Because the scaled image size has to be integers, we approximate the real
// scale with the following formula (only X direction is shown):
//
// scaledImageWidth = round(scaleX * imageRect.width())
// approximateScaleX = scaledImageWidth / imageRect.width()
//
// With this method we maintain a constant scale factor among fragments in
// the scaled image. This allows fragments to stitch together to form the
// full scaled image. The downside is there will be a small difference
// between |scaleX| and |approximateScaleX|.
//
// A scaled image fragment is identified by:
//
// - Scaled image size
// - Scaled image fragment rectangle (IntRect)
//
// Scaled image size has been determined and the next step is to compute the
// rectangle for the scaled image fragment which needs to be an IntRect.
//
// scaledSrcRect = srcRect * (approximateScaleX, approximateScaleY)
// enclosingScaledSrcRect = enclosingIntRect(scaledSrcRect)
//
// Finally we extract the scaled image fragment using
// (scaledImageSize, enclosingScaledSrcRect).
//
static SkBitmap extractScaledImageFragment(const NativeImageSkia& bitmap, const SkRect& srcRect, float scaleX, float scaleY, SkRect* scaledSrcRect, SkIRect* enclosingScaledSrcRect)
{
SkISize imageSize = SkISize::Make(bitmap.bitmap().width(), bitmap.bitmap().height());
SkISize scaledImageSize = SkISize::Make(clampToInteger(roundf(imageSize.width() * scaleX)),
clampToInteger(roundf(imageSize.height() * scaleY)));
SkRect imageRect = SkRect::MakeWH(imageSize.width(), imageSize.height());
SkRect scaledImageRect = SkRect::MakeWH(scaledImageSize.width(), scaledImageSize.height());
SkMatrix scaleTransform;
scaleTransform.setRectToRect(imageRect, scaledImageRect, SkMatrix::kFill_ScaleToFit);
scaleTransform.mapRect(scaledSrcRect, srcRect);
scaledSrcRect->intersect(scaledImageRect);
*enclosingScaledSrcRect = enclosingIntRect(*scaledSrcRect);
// |enclosingScaledSrcRect| can be larger than |scaledImageSize| because
// of float inaccuracy so clip to get inside.
enclosingScaledSrcRect->intersect(SkIRect::MakeSize(scaledImageSize));
return bitmap.resizedBitmap(scaledImageSize, *enclosingScaledSrcRect);
}
// This does a lot of computation to resample only the portion of the bitmap
// that will only be drawn. This is critical for performance since when we are
// scrolling, for example, we are only drawing a small strip of the image.
// Resampling the whole image every time is very slow, so this speeds up things
// dramatically.
//
// Note: this code is only used when the canvas transformation is limited to
// scaling or translation.
static void drawResampledBitmap(PlatformContextSkia* context, SkPaint& paint, const NativeImageSkia& bitmap, const SkRect& srcRect, const SkRect& destRect)
{
#if PLATFORM(CHROMIUM)
TRACE_EVENT0("skia", "drawResampledBitmap");
#endif
// We want to scale |destRect| with transformation in the canvas to obtain
// the final scale. The final scale is a combination of scale transform
// in canvas and explicit scaling (srcRect and destRect).
SkRect screenRect;
context->getTotalMatrix().mapRect(&screenRect, destRect);
float realScaleX = screenRect.width() / srcRect.width();
float realScaleY = screenRect.height() / srcRect.height();
// This part of code limits scaling only to visible portion in the
SkRect destRectVisibleSubset;
ClipRectToCanvas(context, destRect, &destRectVisibleSubset);
// ClipRectToCanvas often overshoots, resulting in a larger region than our
// original destRect. Intersecting gets us back inside.
if (!destRectVisibleSubset.intersect(destRect))
return; // Nothing visible in destRect.
// Find the corresponding rect in the source image.
SkMatrix destToSrcTransform;
SkRect srcRectVisibleSubset;
destToSrcTransform.setRectToRect(destRect, srcRect, SkMatrix::kFill_ScaleToFit);
destToSrcTransform.mapRect(&srcRectVisibleSubset, destRectVisibleSubset);
SkRect scaledSrcRect;
SkIRect enclosingScaledSrcRect;
SkBitmap scaledImageFragment = extractScaledImageFragment(bitmap, srcRectVisibleSubset, realScaleX, realScaleY, &scaledSrcRect, &enclosingScaledSrcRect);
// Expand the destination rectangle because the source rectangle was
// expanded to fit to integer boundaries.
SkMatrix scaledSrcToDestTransform;
scaledSrcToDestTransform.setRectToRect(scaledSrcRect, destRectVisibleSubset, SkMatrix::kFill_ScaleToFit);
SkRect enclosingDestRect;
enclosingDestRect.set(enclosingScaledSrcRect);
scaledSrcToDestTransform.mapRect(&enclosingDestRect);
// The reason we do clipping is because Skia doesn't support SkRect as
// source rect. See http://crbug.com/145540.
// When Skia supports then use this as the source rect to replace 0.
//
// scaledSrcRect.offset(-enclosingScaledSrcRect.x(), -enclosingScaledSrcRect.y());
context->save();
context->clipRect(destRectVisibleSubset);
// Because the image fragment is generated with an approxmiated scaling
// factor. This draw will perform a close to 1 scaling.
//
// NOTE: For future optimization. If the difference in scale is so small
// that Skia doesn't produce a difference then we can just blit it directly
// to enhance performance.
context->drawBitmapRect(scaledImageFragment, 0, enclosingDestRect, &paint);
context->restore();
}
static bool hasNon90rotation(PlatformContextSkia* context)
{
return !context->getTotalMatrix().rectStaysRect();
}
static void paintSkBitmap(PlatformContextSkia* platformContext, const NativeImageSkia& bitmap, const SkRect& srcRect, const SkRect& destRect, const SkXfermode::Mode& compOp)
{
#if PLATFORM(CHROMIUM)
TRACE_EVENT0("skia", "paintSkBitmap");
#endif
SkPaint paint;
paint.setXfermodeMode(compOp);
paint.setAlpha(platformContext->getNormalizedAlpha());
paint.setLooper(platformContext->getDrawLooper());
// only antialias if we're rotated or skewed
paint.setAntiAlias(hasNon90rotation(platformContext));
ResamplingMode resampling;
if (platformContext->isAccelerated())
resampling = RESAMPLE_LINEAR;
else if (platformContext->printing())
resampling = RESAMPLE_NONE;
else {
// Take into account scale applied to the canvas when computing sampling mode (e.g. CSS scale or page scale).
SkRect destRectTarget = destRect;
if (!(platformContext->getTotalMatrix().getType() & (SkMatrix::kAffine_Mask | SkMatrix::kPerspective_Mask)))
platformContext->getTotalMatrix().mapRect(&destRectTarget, destRect);
resampling = computeResamplingMode(platformContext->getTotalMatrix(), bitmap,
SkScalarToFloat(srcRect.width()), SkScalarToFloat(srcRect.height()),
SkScalarToFloat(destRectTarget.width()), SkScalarToFloat(destRectTarget.height()));
}
if (resampling == RESAMPLE_NONE) {
// FIXME: This is to not break tests (it results in the filter bitmap flag
// being set to true). We need to decide if we respect RESAMPLE_NONE
// being returned from computeResamplingMode.
resampling = RESAMPLE_LINEAR;
}
resampling = limitResamplingMode(platformContext, resampling);
paint.setFilterBitmap(resampling == RESAMPLE_LINEAR);
if (resampling == RESAMPLE_AWESOME)
drawResampledBitmap(platformContext, paint, bitmap, srcRect, destRect);
else {
// No resampling necessary, we can just draw the bitmap. We want to
// filter it if we decided to do linear interpolation above, or if there
// is something interesting going on with the matrix (like a rotation).
// Note: for serialization, we will want to subset the bitmap first so
// we don't send extra pixels.
SkIRect enclosingSrcRect;
SkRect enclosingDestRect;
SkISize bitmapSize = SkISize::Make(bitmap.bitmap().width(), bitmap.bitmap().height());
bool needsClipping = computeBitmapDrawRects(bitmapSize, srcRect, destRect, &enclosingSrcRect, &enclosingDestRect);
if (enclosingSrcRect.isEmpty() || enclosingDestRect.isEmpty())
return;
// If destination is enlarged because source rectangle didn't align to
// integer boundaries then we draw a slightly larger rectangle and clip
// to the original destination rectangle.
// See http://crbug.com/145540.
if (needsClipping) {
platformContext->save();
platformContext->clipRect(destRect);
}
platformContext->drawBitmapRect(bitmap.bitmap(), &enclosingSrcRect, enclosingDestRect, &paint);
if (needsClipping)
platformContext->restore();
}
platformContext->didDrawRect(destRect, paint, &bitmap.bitmap());
}
// A helper method for translating negative width and height values.
FloatRect normalizeRect(const FloatRect& rect)
{
FloatRect norm = rect;
if (norm.width() < 0) {
norm.setX(norm.x() + norm.width());
norm.setWidth(-norm.width());
}
if (norm.height() < 0) {
norm.setY(norm.y() + norm.height());
norm.setHeight(-norm.height());
}
return norm;
}
bool FrameData::clear(bool clearMetadata)
{
if (clearMetadata)
m_haveMetadata = false;
m_orientation = DefaultImageOrientation;
if (m_frame) {
// ImageSource::createFrameAtIndex() allocated |m_frame| and passed
// ownership to BitmapImage; we must delete it here.
delete m_frame;
m_frame = 0;
return true;
}
return false;
}
void Image::drawPattern(GraphicsContext* context,
const FloatRect& floatSrcRect,
const AffineTransform& patternTransform,
const FloatPoint& phase,
ColorSpace styleColorSpace,
CompositeOperator compositeOp,
const FloatRect& destRect)
{
#if PLATFORM(CHROMIUM)
TRACE_EVENT0("skia", "Image::drawPattern");
#endif
NativeImageSkia* bitmap = nativeImageForCurrentFrame();
if (!bitmap)
return;
FloatRect normSrcRect = normalizeRect(floatSrcRect);
normSrcRect.intersect(FloatRect(0, 0, bitmap->bitmap().width(), bitmap->bitmap().height()));
if (destRect.isEmpty() || normSrcRect.isEmpty())
return; // nothing to draw
SkMatrix ctm = context->platformContext()->getTotalMatrix();
SkMatrix totalMatrix;
totalMatrix.setConcat(ctm, patternTransform);
// Figure out what size the bitmap will be in the destination. The
// destination rect is the bounds of the pattern, we need to use the
// matrix to see how big it will be.
SkRect destRectTarget;
totalMatrix.mapRect(&destRectTarget, normSrcRect);
float destBitmapWidth = SkScalarToFloat(destRectTarget.width());
float destBitmapHeight = SkScalarToFloat(destRectTarget.height());
// Compute the resampling mode.
ResamplingMode resampling;
if (context->platformContext()->isAccelerated() || context->platformContext()->printing())
resampling = RESAMPLE_LINEAR;
else
resampling = computeResamplingMode(totalMatrix, *bitmap, normSrcRect.width(), normSrcRect.height(), destBitmapWidth, destBitmapHeight);
resampling = limitResamplingMode(context->platformContext(), resampling);
// Load the transform WebKit requested.
SkMatrix matrix(patternTransform);
SkShader* shader;
if (resampling == RESAMPLE_AWESOME) {
// Do nice resampling.
float scaleX = destBitmapWidth / normSrcRect.width();
float scaleY = destBitmapHeight / normSrcRect.height();
SkRect scaledSrcRect;
SkIRect enclosingScaledSrcRect;
// The image fragment generated here is not exactly what is
// requested. The scale factor used is approximated and image
// fragment is slightly larger to align to integer
// boundaries.
SkBitmap resampled = extractScaledImageFragment(*bitmap, normSrcRect, scaleX, scaleY, &scaledSrcRect, &enclosingScaledSrcRect);
shader = SkShader::CreateBitmapShader(resampled, SkShader::kRepeat_TileMode, SkShader::kRepeat_TileMode);
// Since we just resized the bitmap, we need to remove the scale
// applied to the pixels in the bitmap shader. This means we need
// CTM * patternTransform to have identity scale. Since we
// can't modify CTM (or the rectangle will be drawn in the wrong
// place), we must set patternTransform's scale to the inverse of
// CTM scale.
matrix.setScaleX(ctm.getScaleX() ? 1 / ctm.getScaleX() : 1);
matrix.setScaleY(ctm.getScaleY() ? 1 / ctm.getScaleY() : 1);
} else {
// No need to do nice resampling.
SkBitmap srcSubset;
bitmap->bitmap().extractSubset(&srcSubset, enclosingIntRect(normSrcRect));
shader = SkShader::CreateBitmapShader(srcSubset, SkShader::kRepeat_TileMode, SkShader::kRepeat_TileMode);
}
// We also need to translate it such that the origin of the pattern is the
// origin of the destination rect, which is what WebKit expects. Skia uses
// the coordinate system origin as the base for the patter. If WebKit wants
// a shifted image, it will shift it from there using the patternTransform.
float adjustedX = phase.x() + normSrcRect.x() *
narrowPrecisionToFloat(patternTransform.a());
float adjustedY = phase.y() + normSrcRect.y() *
narrowPrecisionToFloat(patternTransform.d());
matrix.postTranslate(SkFloatToScalar(adjustedX),
SkFloatToScalar(adjustedY));
shader->setLocalMatrix(matrix);
SkPaint paint;
paint.setShader(shader)->unref();
paint.setXfermodeMode(WebCoreCompositeToSkiaComposite(compositeOp));
paint.setFilterBitmap(resampling == RESAMPLE_LINEAR);
context->platformContext()->drawRect(destRect, paint);
}
// ================================================
// BitmapImage Class
// ================================================
// FIXME: These should go to BitmapImageSkia.cpp
void BitmapImage::invalidatePlatformData()
{
}
void BitmapImage::checkForSolidColor()
{
m_isSolidColor = false;
m_checkedForSolidColor = true;
if (frameCount() > 1)
return;
WebCore::NativeImageSkia* frame = frameAtIndex(0);
if (frame && size().width() == 1 && size().height() == 1) {
SkAutoLockPixels lock(frame->bitmap());
if (!frame->bitmap().getPixels())
return;
m_isSolidColor = true;
m_solidColor = Color(frame->bitmap().getColor(0, 0));
}
}
void BitmapImage::draw(GraphicsContext* ctxt, const FloatRect& dstRect, const FloatRect& srcRect, ColorSpace colorSpace, CompositeOperator compositeOp)
{
draw(ctxt, dstRect, srcRect, colorSpace, compositeOp, DoNotRespectImageOrientation);
}
void BitmapImage::draw(GraphicsContext* ctxt, const FloatRect& dstRect, const FloatRect& srcRect, ColorSpace colorSpace, CompositeOperator compositeOp, RespectImageOrientationEnum shouldRespectImageOrientation)
{
if (!m_source.initialized())
return;
// Spin the animation to the correct frame before we try to draw it, so we
// don't draw an old frame and then immediately need to draw a newer one,
// causing flicker and wasting CPU.
startAnimation();
NativeImageSkia* bm = nativeImageForCurrentFrame();
if (!bm)
return; // It's too early and we don't have an image yet.
FloatRect normDstRect = normalizeRect(dstRect);
FloatRect normSrcRect = normalizeRect(srcRect);
normSrcRect.intersect(FloatRect(0, 0, bm->bitmap().width(), bm->bitmap().height()));
if (normSrcRect.isEmpty() || normDstRect.isEmpty())
return; // Nothing to draw.
ImageOrientation orientation = DefaultImageOrientation;
if (shouldRespectImageOrientation == RespectImageOrientation)
orientation = frameOrientationAtIndex(m_currentFrame);
GraphicsContextStateSaver saveContext(*ctxt, false);
if (orientation != DefaultImageOrientation) {
saveContext.save();
// ImageOrientation expects the origin to be at (0, 0)
ctxt->translate(normDstRect.x(), normDstRect.y());
normDstRect.setLocation(FloatPoint());
ctxt->concatCTM(orientation.transformFromDefault(normDstRect.size()));
if (orientation.usesWidthAsHeight()) {
// The destination rect will have it's width and height already reversed for the orientation of
// the image, as it was needed for page layout, so we need to reverse it back here.
normDstRect = FloatRect(normDstRect.x(), normDstRect.y(), normDstRect.height(), normDstRect.width());
}
}
paintSkBitmap(ctxt->platformContext(),
*bm,
normSrcRect,
normDstRect,
WebCoreCompositeToSkiaComposite(compositeOp));
if (ImageObserver* observer = imageObserver())
observer->didDraw(this);
}
// FIXME: These should go into BitmapImageSingleFrameSkia.cpp
void BitmapImageSingleFrameSkia::draw(GraphicsContext* ctxt,
const FloatRect& dstRect,
const FloatRect& srcRect,
ColorSpace styleColorSpace,
CompositeOperator compositeOp)
{
FloatRect normDstRect = normalizeRect(dstRect);
FloatRect normSrcRect = normalizeRect(srcRect);
normSrcRect.intersect(FloatRect(0, 0, m_nativeImage.bitmap().width(), m_nativeImage.bitmap().height()));
if (normSrcRect.isEmpty() || normDstRect.isEmpty())
return; // Nothing to draw.
paintSkBitmap(ctxt->platformContext(),
m_nativeImage,
normSrcRect,
normDstRect,
WebCoreCompositeToSkiaComposite(compositeOp));
if (ImageObserver* observer = imageObserver())
observer->didDraw(this);
}
BitmapImageSingleFrameSkia::BitmapImageSingleFrameSkia(const SkBitmap& bitmap, float resolutionScale)
: m_nativeImage(bitmap, resolutionScale)
{
}
PassRefPtr<BitmapImageSingleFrameSkia> BitmapImageSingleFrameSkia::create(const SkBitmap& bitmap, bool copyPixels, float resolutionScale)
{
if (copyPixels) {
SkBitmap temp;
if (!bitmap.deepCopyTo(&temp, bitmap.config()))
bitmap.copyTo(&temp, bitmap.config());
return adoptRef(new BitmapImageSingleFrameSkia(temp, resolutionScale));
}
return adoptRef(new BitmapImageSingleFrameSkia(bitmap, resolutionScale));
}
} // namespace WebCore
|