1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 721 722 723 724 725 726 727 728 729 730 731 732 733 734 735 736 737 738 739 740 741 742 743 744 745 746 747 748 749 750 751 752 753 754 755 756 757 758 759 760 761 762 763 764 765 766 767 768 769 770 771 772 773 774 775 776 777 778 779 780 781 782 783 784 785 786 787 788 789 790 791 792 793 794 795 796 797 798 799 800 801 802 803 804 805 806 807 808 809 810 811 812 813 814 815 816 817 818 819 820 821 822 823 824 825 826 827 828 829 830 831 832 833 834 835 836 837 838 839 840 841 842 843 844 845 846 847 848 849 850 851 852 853 854 855 856 857 858 859 860 861 862 863 864 865 866 867 868 869 870 871 872 873 874 875 876 877 878 879 880 881 882 883 884 885 886 887 888 889 890 891 892 893 894 895 896 897 898 899 900 901 902 903 904 905 906 907 908 909 910 911 912 913 914 915 916 917 918 919 920 921 922 923 924 925 926 927 928 929 930 931 932 933 934 935 936 937 938 939 940 941 942 943 944 945 946 947 948 949 950 951 952 953 954 955 956 957 958 959 960 961 962 963 964 965 966 967 968 969 970 971 972 973 974 975 976 977 978 979 980 981 982 983 984 985 986 987 988 989 990 991 992 993 994 995 996 997 998 999 1000 1001 1002 1003 1004 1005 1006 1007 1008 1009 1010 1011 1012 1013 1014 1015 1016 1017 1018 1019 1020 1021 1022 1023 1024 1025 1026 1027 1028 1029 1030 1031 1032 1033 1034 1035 1036 1037 1038 1039 1040 1041 1042 1043 1044 1045 1046 1047 1048 1049 1050 1051 1052 1053 1054 1055 1056 1057 1058 1059 1060 1061 1062 1063 1064 1065 1066 1067 1068 1069 1070 1071 1072 1073 1074 1075 1076 1077 1078 1079 1080 1081 1082 1083 1084 1085 1086 1087 1088 1089 1090 1091 1092 1093 1094 1095 1096 1097 1098 1099 1100 1101 1102 1103 1104 1105 1106 1107 1108 1109 1110 1111 1112 1113 1114 1115 1116 1117 1118 1119 1120 1121 1122 1123 1124 1125 1126 1127 1128 1129 1130 1131 1132 1133 1134 1135 1136 1137 1138 1139 1140 1141 1142 1143 1144 1145 1146 1147 1148 1149 1150 1151 1152 1153 1154 1155 1156 1157 1158 1159 1160 1161 1162 1163 1164 1165 1166 1167 1168 1169 1170 1171 1172 1173 1174 1175 1176 1177 1178 1179 1180 1181 1182 1183 1184 1185 1186 1187 1188 1189 1190 1191 1192 1193 1194 1195 1196 1197 1198 1199 1200 1201 1202 1203 1204 1205 1206 1207 1208 1209 1210 1211 1212 1213 1214 1215 1216 1217 1218 1219 1220 1221 1222 1223 1224 1225 1226 1227 1228 1229 1230 1231 1232 1233 1234 1235 1236 1237 1238 1239 1240 1241 1242 1243 1244 1245 1246 1247 1248 1249 1250 1251 1252 1253 1254 1255 1256 1257 1258 1259 1260 1261 1262 1263 1264 1265 1266 1267 1268 1269 1270 1271 1272 1273 1274 1275 1276 1277 1278 1279 1280 1281 1282 1283 1284 1285 1286 1287 1288 1289 1290 1291 1292 1293 1294 1295 1296 1297 1298 1299 1300 1301 1302 1303 1304 1305 1306 1307 1308 1309 1310 1311 1312 1313 1314 1315 1316 1317 1318 1319 1320 1321 1322 1323 1324 1325 1326 1327 1328 1329 1330 1331 1332 1333 1334 1335 1336 1337 1338 1339 1340 1341 1342 1343 1344 1345 1346 1347 1348 1349 1350 1351 1352 1353 1354 1355 1356 1357 1358 1359 1360 1361 1362 1363 1364 1365 1366 1367 1368 1369 1370 1371 1372 1373 1374 1375 1376 1377 1378 1379 1380 1381 1382 1383 1384 1385 1386 1387 1388 1389 1390 1391 1392 1393 1394 1395 1396 1397 1398 1399 1400 1401 1402 1403 1404 1405 1406 1407 1408 1409 1410 1411 1412 1413 1414 1415 1416 1417 1418 1419 1420 1421 1422 1423 1424 1425 1426 1427 1428 1429 1430 1431 1432 1433 1434 1435 1436 1437 1438 1439 1440 1441 1442 1443 1444 1445 1446 1447 1448 1449 1450 1451 1452 1453 1454 1455 1456 1457 1458 1459 1460 1461 1462 1463 1464 1465 1466 1467 1468 1469 1470 1471 1472 1473 1474 1475 1476 1477 1478 1479 1480 1481 1482 1483 1484 1485 1486 1487 1488 1489 1490 1491 1492 1493 1494 1495 1496
|
/*
* Dictionary Abstract Data Type
* Copyright (C) 1997 Kaz Kylheku <kaz@ashi.footprints.net>
*
* Free Software License:
*
* All rights are reserved by the author, with the following exceptions:
* Permission is granted to freely reproduce and distribute this software,
* possibly in exchange for a fee, provided that this copyright notice appears
* intact. Permission is also granted to adapt this software to produce
* derivative works, as long as the modified versions carry this copyright
* notice and additional notices stating that the work has been modified.
* This source code may be translated into executable form and incorporated
* into proprietary software; there is no requirement for such software to
* contain a copyright notice related to this source.
*
* $Id: dict.c,v 1.4 2005/09/25 12:04:25 hasso Exp $
* $Name: $
*/
#include <stdlib.h>
#include <stddef.h>
#include "zassert.h"
#define DICT_IMPLEMENTATION
#include "dict.h"
#ifdef KAZLIB_RCSID
static const char rcsid[] = "Id: dict.c,v 1.40.2.7 2000/11/13 01:36:44 kaz";
#endif
/*
* These macros provide short convenient names for structure members,
* which are embellished with dict_ prefixes so that they are
* properly confined to the documented namespace. It's legal for a
* program which uses dict to define, for instance, a macro called ``parent''.
* Such a macro would interfere with the dnode_t struct definition.
* In general, highly portable and reusable C modules which expose their
* structures need to confine structure member names to well-defined spaces.
* The resulting identifiers aren't necessarily convenient to use, nor
* readable, in the implementation, however!
*/
#define left dict_left
#define right dict_right
#define parent dict_parent
#define color dict_color
#define key dict_key
#define data dict_data
#define nilnode dict_nilnode
#define nodecount dict_nodecount
#define maxcount dict_maxcount
#define compare dict_compare
#define allocnode dict_allocnode
#define freenode dict_freenode
#define context dict_context
#define dupes dict_dupes
#define dictptr dict_dictptr
#define dict_root(D) ((D)->nilnode.left)
#define dict_nil(D) (&(D)->nilnode)
#define DICT_DEPTH_MAX 64
static dnode_t *dnode_alloc(void *context);
static void dnode_free(dnode_t *node, void *context);
/*
* Perform a ``left rotation'' adjustment on the tree. The given node P and
* its right child C are rearranged so that the P instead becomes the left
* child of C. The left subtree of C is inherited as the new right subtree
* for P. The ordering of the keys within the tree is thus preserved.
*/
static void rotate_left(dnode_t *upper)
{
dnode_t *lower, *lowleft, *upparent;
lower = upper->right;
upper->right = lowleft = lower->left;
lowleft->parent = upper;
lower->parent = upparent = upper->parent;
/* don't need to check for root node here because root->parent is
the sentinel nil node, and root->parent->left points back to root */
if (upper == upparent->left) {
upparent->left = lower;
} else {
assert (upper == upparent->right);
upparent->right = lower;
}
lower->left = upper;
upper->parent = lower;
}
/*
* This operation is the ``mirror'' image of rotate_left. It is
* the same procedure, but with left and right interchanged.
*/
static void rotate_right(dnode_t *upper)
{
dnode_t *lower, *lowright, *upparent;
lower = upper->left;
upper->left = lowright = lower->right;
lowright->parent = upper;
lower->parent = upparent = upper->parent;
if (upper == upparent->right) {
upparent->right = lower;
} else {
assert (upper == upparent->left);
upparent->left = lower;
}
lower->right = upper;
upper->parent = lower;
}
/*
* Do a postorder traversal of the tree rooted at the specified
* node and free everything under it. Used by dict_free().
*/
static void free_nodes(dict_t *dict, dnode_t *node, dnode_t *nil)
{
if (node == nil)
return;
free_nodes(dict, node->left, nil);
free_nodes(dict, node->right, nil);
dict->freenode(node, dict->context);
}
/*
* This procedure performs a verification that the given subtree is a binary
* search tree. It performs an inorder traversal of the tree using the
* dict_next() successor function, verifying that the key of each node is
* strictly lower than that of its successor, if duplicates are not allowed,
* or lower or equal if duplicates are allowed. This function is used for
* debugging purposes.
*/
static int verify_bintree(dict_t *dict)
{
dnode_t *first, *next;
first = dict_first(dict);
if (dict->dupes) {
while (first && (next = dict_next(dict, first))) {
if (dict->compare(first->key, next->key) > 0)
return 0;
first = next;
}
} else {
while (first && (next = dict_next(dict, first))) {
if (dict->compare(first->key, next->key) >= 0)
return 0;
first = next;
}
}
return 1;
}
/*
* This function recursively verifies that the given binary subtree satisfies
* three of the red black properties. It checks that every red node has only
* black children. It makes sure that each node is either red or black. And it
* checks that every path has the same count of black nodes from root to leaf.
* It returns the blackheight of the given subtree; this allows blackheights to
* be computed recursively and compared for left and right siblings for
* mismatches. It does not check for every nil node being black, because there
* is only one sentinel nil node. The return value of this function is the
* black height of the subtree rooted at the node ``root'', or zero if the
* subtree is not red-black.
*/
static unsigned int verify_redblack(dnode_t *nil, dnode_t *root)
{
unsigned height_left, height_right;
if (root != nil) {
height_left = verify_redblack(nil, root->left);
height_right = verify_redblack(nil, root->right);
if (height_left == 0 || height_right == 0)
return 0;
if (height_left != height_right)
return 0;
if (root->color == dnode_red) {
if (root->left->color != dnode_black)
return 0;
if (root->right->color != dnode_black)
return 0;
return height_left;
}
if (root->color != dnode_black)
return 0;
return height_left + 1;
}
return 1;
}
/*
* Compute the actual count of nodes by traversing the tree and
* return it. This could be compared against the stored count to
* detect a mismatch.
*/
static dictcount_t verify_node_count(dnode_t *nil, dnode_t *root)
{
if (root == nil)
return 0;
else
return 1 + verify_node_count(nil, root->left)
+ verify_node_count(nil, root->right);
}
/*
* Verify that the tree contains the given node. This is done by
* traversing all of the nodes and comparing their pointers to the
* given pointer. Returns 1 if the node is found, otherwise
* returns zero. It is intended for debugging purposes.
*/
static int verify_dict_has_node(dnode_t *nil, dnode_t *root, dnode_t *node)
{
if (root != nil) {
return root == node
|| verify_dict_has_node(nil, root->left, node)
|| verify_dict_has_node(nil, root->right, node);
}
return 0;
}
/*
* Dynamically allocate and initialize a dictionary object.
*/
dict_t *dict_create(dictcount_t maxcount, dict_comp_t comp)
{
dict_t *new = malloc(sizeof *new);
if (new) {
new->compare = comp;
new->allocnode = dnode_alloc;
new->freenode = dnode_free;
new->context = NULL;
new->nodecount = 0;
new->maxcount = maxcount;
new->nilnode.left = &new->nilnode;
new->nilnode.right = &new->nilnode;
new->nilnode.parent = &new->nilnode;
new->nilnode.color = dnode_black;
new->dupes = 0;
}
return new;
}
/*
* Select a different set of node allocator routines.
*/
void dict_set_allocator(dict_t *dict, dnode_alloc_t al,
dnode_free_t fr, void *context)
{
assert (dict_count(dict) == 0);
assert ((al == NULL && fr == NULL) || (al != NULL && fr != NULL));
dict->allocnode = al ? al : dnode_alloc;
dict->freenode = fr ? fr : dnode_free;
dict->context = context;
}
/*
* Free a dynamically allocated dictionary object. Removing the nodes
* from the tree before deleting it is required.
*/
void dict_destroy(dict_t *dict)
{
assert (dict_isempty(dict));
free(dict);
}
/*
* Free all the nodes in the dictionary by using the dictionary's
* installed free routine. The dictionary is emptied.
*/
void dict_free_nodes(dict_t *dict)
{
dnode_t *nil = dict_nil(dict), *root = dict_root(dict);
free_nodes(dict, root, nil);
dict->nodecount = 0;
dict->nilnode.left = &dict->nilnode;
dict->nilnode.right = &dict->nilnode;
}
/*
* Obsolescent function, equivalent to dict_free_nodes
*/
void dict_free(dict_t *dict)
{
#ifdef KAZLIB_OBSOLESCENT_DEBUG
assert ("call to obsolescent function dict_free()" && 0);
#endif
dict_free_nodes(dict);
}
/*
* Initialize a user-supplied dictionary object.
*/
dict_t *dict_init(dict_t *dict, dictcount_t maxcount, dict_comp_t comp)
{
dict->compare = comp;
dict->allocnode = dnode_alloc;
dict->freenode = dnode_free;
dict->context = NULL;
dict->nodecount = 0;
dict->maxcount = maxcount;
dict->nilnode.left = &dict->nilnode;
dict->nilnode.right = &dict->nilnode;
dict->nilnode.parent = &dict->nilnode;
dict->nilnode.color = dnode_black;
dict->dupes = 0;
return dict;
}
/*
* Initialize a dictionary in the likeness of another dictionary
*/
void dict_init_like(dict_t *dict, const dict_t *template)
{
dict->compare = template->compare;
dict->allocnode = template->allocnode;
dict->freenode = template->freenode;
dict->context = template->context;
dict->nodecount = 0;
dict->maxcount = template->maxcount;
dict->nilnode.left = &dict->nilnode;
dict->nilnode.right = &dict->nilnode;
dict->nilnode.parent = &dict->nilnode;
dict->nilnode.color = dnode_black;
dict->dupes = template->dupes;
assert (dict_similar(dict, template));
}
/*
* Remove all nodes from the dictionary (without freeing them in any way).
*/
static void dict_clear(dict_t *dict)
{
dict->nodecount = 0;
dict->nilnode.left = &dict->nilnode;
dict->nilnode.right = &dict->nilnode;
dict->nilnode.parent = &dict->nilnode;
assert (dict->nilnode.color == dnode_black);
}
/*
* Verify the integrity of the dictionary structure. This is provided for
* debugging purposes, and should be placed in assert statements. Just because
* this function succeeds doesn't mean that the tree is not corrupt. Certain
* corruptions in the tree may simply cause undefined behavior.
*/
int dict_verify(dict_t *dict)
{
dnode_t *nil = dict_nil(dict), *root = dict_root(dict);
/* check that the sentinel node and root node are black */
if (root->color != dnode_black)
return 0;
if (nil->color != dnode_black)
return 0;
if (nil->right != nil)
return 0;
/* nil->left is the root node; check that its parent pointer is nil */
if (nil->left->parent != nil)
return 0;
/* perform a weak test that the tree is a binary search tree */
if (!verify_bintree(dict))
return 0;
/* verify that the tree is a red-black tree */
if (!verify_redblack(nil, root))
return 0;
if (verify_node_count(nil, root) != dict_count(dict))
return 0;
return 1;
}
/*
* Determine whether two dictionaries are similar: have the same comparison and
* allocator functions, and same status as to whether duplicates are allowed.
*/
int dict_similar(const dict_t *left, const dict_t *right)
{
if (left->compare != right->compare)
return 0;
if (left->allocnode != right->allocnode)
return 0;
if (left->freenode != right->freenode)
return 0;
if (left->context != right->context)
return 0;
if (left->dupes != right->dupes)
return 0;
return 1;
}
/*
* Locate a node in the dictionary having the given key.
* If the node is not found, a null a pointer is returned (rather than
* a pointer that dictionary's nil sentinel node), otherwise a pointer to the
* located node is returned.
*/
dnode_t *dict_lookup(dict_t *dict, const void *key)
{
dnode_t *root = dict_root(dict);
dnode_t *nil = dict_nil(dict);
dnode_t *saved;
int result;
/* simple binary search adapted for trees that contain duplicate keys */
while (root != nil) {
result = dict->compare(key, root->key);
if (result < 0)
root = root->left;
else if (result > 0)
root = root->right;
else {
if (!dict->dupes) { /* no duplicates, return match */
return root;
} else { /* could be dupes, find leftmost one */
do {
saved = root;
root = root->left;
while (root != nil && dict->compare(key, root->key))
root = root->right;
} while (root != nil);
return saved;
}
}
}
return NULL;
}
/*
* Look for the node corresponding to the lowest key that is equal to or
* greater than the given key. If there is no such node, return null.
*/
dnode_t *dict_lower_bound(dict_t *dict, const void *key)
{
dnode_t *root = dict_root(dict);
dnode_t *nil = dict_nil(dict);
dnode_t *tentative = 0;
while (root != nil) {
int result = dict->compare(key, root->key);
if (result > 0) {
root = root->right;
} else if (result < 0) {
tentative = root;
root = root->left;
} else {
if (!dict->dupes) {
return root;
} else {
tentative = root;
root = root->left;
}
}
}
return tentative;
}
/*
* Look for the node corresponding to the greatest key that is equal to or
* lower than the given key. If there is no such node, return null.
*/
dnode_t *dict_upper_bound(dict_t *dict, const void *key)
{
dnode_t *root = dict_root(dict);
dnode_t *nil = dict_nil(dict);
dnode_t *tentative = 0;
while (root != nil) {
int result = dict->compare(key, root->key);
if (result < 0) {
root = root->left;
} else if (result > 0) {
tentative = root;
root = root->right;
} else {
if (!dict->dupes) {
return root;
} else {
tentative = root;
root = root->right;
}
}
}
return tentative;
}
/*
* Insert a node into the dictionary. The node should have been
* initialized with a data field. All other fields are ignored.
* The behavior is undefined if the user attempts to insert into
* a dictionary that is already full (for which the dict_isfull()
* function returns true).
*/
void dict_insert(dict_t *dict, dnode_t *node, const void *key)
{
dnode_t *where = dict_root(dict), *nil = dict_nil(dict);
dnode_t *parent = nil, *uncle, *grandpa;
int result = -1;
node->key = key;
assert (!dict_isfull(dict));
assert (!dict_contains(dict, node));
assert (!dnode_is_in_a_dict(node));
/* basic binary tree insert */
while (where != nil) {
parent = where;
result = dict->compare(key, where->key);
/* trap attempts at duplicate key insertion unless it's explicitly allowed */
assert (dict->dupes || result != 0);
if (result < 0)
where = where->left;
else
where = where->right;
}
assert (where == nil);
if (result < 0)
parent->left = node;
else
parent->right = node;
node->parent = parent;
node->left = nil;
node->right = nil;
dict->nodecount++;
/* red black adjustments */
node->color = dnode_red;
while (parent->color == dnode_red) {
grandpa = parent->parent;
if (parent == grandpa->left) {
uncle = grandpa->right;
if (uncle->color == dnode_red) { /* red parent, red uncle */
parent->color = dnode_black;
uncle->color = dnode_black;
grandpa->color = dnode_red;
node = grandpa;
parent = grandpa->parent;
} else { /* red parent, black uncle */
if (node == parent->right) {
rotate_left(parent);
parent = node;
assert (grandpa == parent->parent);
/* rotation between parent and child preserves grandpa */
}
parent->color = dnode_black;
grandpa->color = dnode_red;
rotate_right(grandpa);
break;
}
} else { /* symmetric cases: parent == parent->parent->right */
uncle = grandpa->left;
if (uncle->color == dnode_red) {
parent->color = dnode_black;
uncle->color = dnode_black;
grandpa->color = dnode_red;
node = grandpa;
parent = grandpa->parent;
} else {
if (node == parent->left) {
rotate_right(parent);
parent = node;
assert (grandpa == parent->parent);
}
parent->color = dnode_black;
grandpa->color = dnode_red;
rotate_left(grandpa);
break;
}
}
}
dict_root(dict)->color = dnode_black;
assert (dict_verify(dict));
}
/*
* Delete the given node from the dictionary. If the given node does not belong
* to the given dictionary, undefined behavior results. A pointer to the
* deleted node is returned.
*/
dnode_t *dict_delete(dict_t *dict, dnode_t *delete)
{
dnode_t *nil = dict_nil(dict), *child, *delparent = delete->parent;
/* basic deletion */
assert (!dict_isempty(dict));
assert (dict_contains(dict, delete));
/*
* If the node being deleted has two children, then we replace it with its
* successor (i.e. the leftmost node in the right subtree.) By doing this,
* we avoid the traditional algorithm under which the successor's key and
* value *only* move to the deleted node and the successor is spliced out
* from the tree. We cannot use this approach because the user may hold
* pointers to the successor, or nodes may be inextricably tied to some
* other structures by way of embedding, etc. So we must splice out the
* node we are given, not some other node, and must not move contents from
* one node to another behind the user's back.
*/
if (delete->left != nil && delete->right != nil) {
dnode_t *next = dict_next(dict, delete);
dnode_t *nextparent = next->parent;
dnode_color_t nextcolor = next->color;
assert (next != nil);
assert (next->parent != nil);
assert (next->left == nil);
/*
* First, splice out the successor from the tree completely, by
* moving up its right child into its place.
*/
child = next->right;
child->parent = nextparent;
if (nextparent->left == next) {
nextparent->left = child;
} else {
assert (nextparent->right == next);
nextparent->right = child;
}
/*
* Now that the successor has been extricated from the tree, install it
* in place of the node that we want deleted.
*/
next->parent = delparent;
next->left = delete->left;
next->right = delete->right;
next->left->parent = next;
next->right->parent = next;
next->color = delete->color;
delete->color = nextcolor;
if (delparent->left == delete) {
delparent->left = next;
} else {
assert (delparent->right == delete);
delparent->right = next;
}
} else {
assert (delete != nil);
assert (delete->left == nil || delete->right == nil);
child = (delete->left != nil) ? delete->left : delete->right;
child->parent = delparent = delete->parent;
if (delete == delparent->left) {
delparent->left = child;
} else {
assert (delete == delparent->right);
delparent->right = child;
}
}
delete->parent = NULL;
delete->right = NULL;
delete->left = NULL;
dict->nodecount--;
assert (verify_bintree(dict));
/* red-black adjustments */
if (delete->color == dnode_black) {
dnode_t *parent, *sister;
dict_root(dict)->color = dnode_red;
while (child->color == dnode_black) {
parent = child->parent;
if (child == parent->left) {
sister = parent->right;
assert (sister != nil);
if (sister->color == dnode_red) {
sister->color = dnode_black;
parent->color = dnode_red;
rotate_left(parent);
sister = parent->right;
assert (sister != nil);
}
if (sister->left->color == dnode_black
&& sister->right->color == dnode_black) {
sister->color = dnode_red;
child = parent;
} else {
if (sister->right->color == dnode_black) {
assert (sister->left->color == dnode_red);
sister->left->color = dnode_black;
sister->color = dnode_red;
rotate_right(sister);
sister = parent->right;
assert (sister != nil);
}
sister->color = parent->color;
sister->right->color = dnode_black;
parent->color = dnode_black;
rotate_left(parent);
break;
}
} else { /* symmetric case: child == child->parent->right */
assert (child == parent->right);
sister = parent->left;
assert (sister != nil);
if (sister->color == dnode_red) {
sister->color = dnode_black;
parent->color = dnode_red;
rotate_right(parent);
sister = parent->left;
assert (sister != nil);
}
if (sister->right->color == dnode_black
&& sister->left->color == dnode_black) {
sister->color = dnode_red;
child = parent;
} else {
if (sister->left->color == dnode_black) {
assert (sister->right->color == dnode_red);
sister->right->color = dnode_black;
sister->color = dnode_red;
rotate_left(sister);
sister = parent->left;
assert (sister != nil);
}
sister->color = parent->color;
sister->left->color = dnode_black;
parent->color = dnode_black;
rotate_right(parent);
break;
}
}
}
child->color = dnode_black;
dict_root(dict)->color = dnode_black;
}
assert (dict_verify(dict));
return delete;
}
/*
* Allocate a node using the dictionary's allocator routine, give it
* the data item.
*/
int dict_alloc_insert(dict_t *dict, const void *key, void *data)
{
dnode_t *node = dict->allocnode(dict->context);
if (node) {
dnode_init(node, data);
dict_insert(dict, node, key);
return 1;
}
return 0;
}
void dict_delete_free(dict_t *dict, dnode_t *node)
{
dict_delete(dict, node);
dict->freenode(node, dict->context);
}
/*
* Return the node with the lowest (leftmost) key. If the dictionary is empty
* (that is, dict_isempty(dict) returns 1) a null pointer is returned.
*/
dnode_t *dict_first(dict_t *dict)
{
dnode_t *nil = dict_nil(dict), *root = dict_root(dict), *left;
if (root != nil)
while ((left = root->left) != nil)
root = left;
return (root == nil) ? NULL : root;
}
/*
* Return the node with the highest (rightmost) key. If the dictionary is empty
* (that is, dict_isempty(dict) returns 1) a null pointer is returned.
*/
dnode_t *dict_last(dict_t *dict)
{
dnode_t *nil = dict_nil(dict), *root = dict_root(dict), *right;
if (root != nil)
while ((right = root->right) != nil)
root = right;
return (root == nil) ? NULL : root;
}
/*
* Return the given node's successor node---the node which has the
* next key in the the left to right ordering. If the node has
* no successor, a null pointer is returned rather than a pointer to
* the nil node.
*/
dnode_t *dict_next(dict_t *dict, dnode_t *curr)
{
dnode_t *nil = dict_nil(dict), *parent, *left;
if (curr->right != nil) {
curr = curr->right;
while ((left = curr->left) != nil)
curr = left;
return curr;
}
parent = curr->parent;
while (parent != nil && curr == parent->right) {
curr = parent;
parent = curr->parent;
}
return (parent == nil) ? NULL : parent;
}
/*
* Return the given node's predecessor, in the key order.
* The nil sentinel node is returned if there is no predecessor.
*/
dnode_t *dict_prev(dict_t *dict, dnode_t *curr)
{
dnode_t *nil = dict_nil(dict), *parent, *right;
if (curr->left != nil) {
curr = curr->left;
while ((right = curr->right) != nil)
curr = right;
return curr;
}
parent = curr->parent;
while (parent != nil && curr == parent->left) {
curr = parent;
parent = curr->parent;
}
return (parent == nil) ? NULL : parent;
}
void dict_allow_dupes(dict_t *dict)
{
dict->dupes = 1;
}
#undef dict_count
#undef dict_isempty
#undef dict_isfull
#undef dnode_get
#undef dnode_put
#undef dnode_getkey
dictcount_t dict_count(dict_t *dict)
{
return dict->nodecount;
}
int dict_isempty(dict_t *dict)
{
return dict->nodecount == 0;
}
int dict_isfull(dict_t *dict)
{
return dict->nodecount == dict->maxcount;
}
int dict_contains(dict_t *dict, dnode_t *node)
{
return verify_dict_has_node(dict_nil(dict), dict_root(dict), node);
}
static dnode_t *dnode_alloc(void *context)
{
return malloc(sizeof *dnode_alloc(NULL));
}
static void dnode_free(dnode_t *node, void *context)
{
free(node);
}
dnode_t *dnode_create(void *data)
{
dnode_t *new = malloc(sizeof *new);
if (new) {
new->data = data;
new->parent = NULL;
new->left = NULL;
new->right = NULL;
}
return new;
}
dnode_t *dnode_init(dnode_t *dnode, void *data)
{
dnode->data = data;
dnode->parent = NULL;
dnode->left = NULL;
dnode->right = NULL;
return dnode;
}
void dnode_destroy(dnode_t *dnode)
{
assert (!dnode_is_in_a_dict(dnode));
free(dnode);
}
void *dnode_get(dnode_t *dnode)
{
return dnode->data;
}
const void *dnode_getkey(dnode_t *dnode)
{
return dnode->key;
}
void dnode_put(dnode_t *dnode, void *data)
{
dnode->data = data;
}
int dnode_is_in_a_dict(dnode_t *dnode)
{
return (dnode->parent && dnode->left && dnode->right);
}
void dict_process(dict_t *dict, void *context, dnode_process_t function)
{
dnode_t *node = dict_first(dict), *next;
while (node != NULL) {
/* check for callback function deleting */
/* the next node from under us */
assert (dict_contains(dict, node));
next = dict_next(dict, node);
function(dict, node, context);
node = next;
}
}
static void load_begin_internal(dict_load_t *load, dict_t *dict)
{
load->dictptr = dict;
load->nilnode.left = &load->nilnode;
load->nilnode.right = &load->nilnode;
}
void dict_load_begin(dict_load_t *load, dict_t *dict)
{
assert (dict_isempty(dict));
load_begin_internal(load, dict);
}
void dict_load_next(dict_load_t *load, dnode_t *newnode, const void *key)
{
dict_t *dict = load->dictptr;
dnode_t *nil = &load->nilnode;
assert (!dnode_is_in_a_dict(newnode));
assert (dict->nodecount < dict->maxcount);
#ifndef NDEBUG
if (dict->nodecount > 0) {
if (dict->dupes)
assert (dict->compare(nil->left->key, key) <= 0);
else
assert (dict->compare(nil->left->key, key) < 0);
}
#endif
newnode->key = key;
nil->right->left = newnode;
nil->right = newnode;
newnode->left = nil;
dict->nodecount++;
}
void dict_load_end(dict_load_t *load)
{
dict_t *dict = load->dictptr;
dnode_t *tree[DICT_DEPTH_MAX] = { 0 };
dnode_t *curr, *dictnil = dict_nil(dict), *loadnil = &load->nilnode, *next;
dnode_t *complete = 0;
dictcount_t fullcount = DICTCOUNT_T_MAX, nodecount = dict->nodecount;
dictcount_t botrowcount;
unsigned baselevel = 0, level = 0, i;
assert (dnode_red == 0 && dnode_black == 1);
while (fullcount >= nodecount && fullcount)
fullcount >>= 1;
botrowcount = nodecount - fullcount;
for (curr = loadnil->left; curr != loadnil; curr = next) {
next = curr->left;
if (complete == NULL && botrowcount-- == 0) {
assert (baselevel == 0);
assert (level == 0);
baselevel = level = 1;
complete = tree[0];
if (complete != 0) {
tree[0] = 0;
complete->right = dictnil;
while (tree[level] != 0) {
tree[level]->right = complete;
complete->parent = tree[level];
complete = tree[level];
tree[level++] = 0;
}
}
}
if (complete == NULL) {
curr->left = dictnil;
curr->right = dictnil;
curr->color = level % 2;
complete = curr;
assert (level == baselevel);
while (tree[level] != 0) {
tree[level]->right = complete;
complete->parent = tree[level];
complete = tree[level];
tree[level++] = 0;
}
} else {
curr->left = complete;
curr->color = (level + 1) % 2;
complete->parent = curr;
tree[level] = curr;
complete = 0;
level = baselevel;
}
}
if (complete == NULL)
complete = dictnil;
for (i = 0; i < DICT_DEPTH_MAX; i++) {
if (tree[i] != 0) {
tree[i]->right = complete;
complete->parent = tree[i];
complete = tree[i];
}
}
dictnil->color = dnode_black;
dictnil->right = dictnil;
complete->parent = dictnil;
complete->color = dnode_black;
dict_root(dict) = complete;
assert (dict_verify(dict));
}
void dict_merge(dict_t *dest, dict_t *source)
{
dict_load_t load;
dnode_t *leftnode = dict_first(dest), *rightnode = dict_first(source);
assert (dict_similar(dest, source));
if (source == dest)
return;
dest->nodecount = 0;
load_begin_internal(&load, dest);
for (;;) {
if (leftnode != NULL && rightnode != NULL) {
if (dest->compare(leftnode->key, rightnode->key) < 0)
goto copyleft;
else
goto copyright;
} else if (leftnode != NULL) {
goto copyleft;
} else if (rightnode != NULL) {
goto copyright;
} else {
assert (leftnode == NULL && rightnode == NULL);
break;
}
copyleft:
{
dnode_t *next = dict_next(dest, leftnode);
#ifndef NDEBUG
leftnode->left = NULL; /* suppress assertion in dict_load_next */
#endif
dict_load_next(&load, leftnode, leftnode->key);
leftnode = next;
continue;
}
copyright:
{
dnode_t *next = dict_next(source, rightnode);
#ifndef NDEBUG
rightnode->left = NULL;
#endif
dict_load_next(&load, rightnode, rightnode->key);
rightnode = next;
continue;
}
}
dict_clear(source);
dict_load_end(&load);
}
#ifdef KAZLIB_TEST_MAIN
#include <stdio.h>
#include <string.h>
#include <ctype.h>
#include <stdarg.h>
typedef char input_t[256];
static int tokenize(char *string, ...)
{
char **tokptr;
va_list arglist;
int tokcount = 0;
va_start(arglist, string);
tokptr = va_arg(arglist, char **);
while (tokptr) {
while (*string && isspace((unsigned char) *string))
string++;
if (!*string)
break;
*tokptr = string;
while (*string && !isspace((unsigned char) *string))
string++;
tokptr = va_arg(arglist, char **);
tokcount++;
if (!*string)
break;
*string++ = 0;
}
va_end(arglist);
return tokcount;
}
static int comparef(const void *key1, const void *key2)
{
return strcmp(key1, key2);
}
static char *dupstring(char *str)
{
int sz = strlen(str) + 1;
char *new = malloc(sz);
if (new)
memcpy(new, str, sz);
return new;
}
static dnode_t *new_node(void *c)
{
static dnode_t few[5];
static int count;
if (count < 5)
return few + count++;
return NULL;
}
static void del_node(dnode_t *n, void *c)
{
}
static int prompt = 0;
static void construct(dict_t *d)
{
input_t in;
int done = 0;
dict_load_t dl;
dnode_t *dn;
char *tok1, *tok2, *val;
const char *key;
char *help =
"p turn prompt on\n"
"q finish construction\n"
"a <key> <val> add new entry\n";
if (!dict_isempty(d))
puts("warning: dictionary not empty!");
dict_load_begin(&dl, d);
while (!done) {
if (prompt)
putchar('>');
fflush(stdout);
if (!fgets(in, sizeof(input_t), stdin))
break;
switch (in[0]) {
case '?':
puts(help);
break;
case 'p':
prompt = 1;
break;
case 'q':
done = 1;
break;
case 'a':
if (tokenize(in+1, &tok1, &tok2, (char **) 0) != 2) {
puts("what?");
break;
}
key = dupstring(tok1);
val = dupstring(tok2);
dn = dnode_create(val);
if (!key || !val || !dn) {
puts("out of memory");
free((void *) key);
free(val);
if (dn)
dnode_destroy(dn);
}
dict_load_next(&dl, dn, key);
break;
default:
putchar('?');
putchar('\n');
break;
}
}
dict_load_end(&dl);
}
int main(void)
{
input_t in;
dict_t darray[10];
dict_t *d = &darray[0];
dnode_t *dn;
int i;
char *tok1, *tok2, *val;
const char *key;
char *help =
"a <key> <val> add value to dictionary\n"
"d <key> delete value from dictionary\n"
"l <key> lookup value in dictionary\n"
"( <key> lookup lower bound\n"
") <key> lookup upper bound\n"
"# <num> switch to alternate dictionary (0-9)\n"
"j <num> <num> merge two dictionaries\n"
"f free the whole dictionary\n"
"k allow duplicate keys\n"
"c show number of entries\n"
"t dump whole dictionary in sort order\n"
"m make dictionary out of sorted items\n"
"p turn prompt on\n"
"s switch to non-functioning allocator\n"
"q quit";
for (i = 0; i < sizeof darray / sizeof *darray; i++)
dict_init(&darray[i], DICTCOUNT_T_MAX, comparef);
for (;;) {
if (prompt)
putchar('>');
fflush(stdout);
if (!fgets(in, sizeof(input_t), stdin))
break;
switch(in[0]) {
case '?':
puts(help);
break;
case 'a':
if (tokenize(in+1, &tok1, &tok2, (char **) 0) != 2) {
puts("what?");
break;
}
key = dupstring(tok1);
val = dupstring(tok2);
if (!key || !val) {
puts("out of memory");
free((void *) key);
free(val);
}
if (!dict_alloc_insert(d, key, val)) {
puts("dict_alloc_insert failed");
free((void *) key);
free(val);
break;
}
break;
case 'd':
if (tokenize(in+1, &tok1, (char **) 0) != 1) {
puts("what?");
break;
}
dn = dict_lookup(d, tok1);
if (!dn) {
puts("dict_lookup failed");
break;
}
val = dnode_get(dn);
key = dnode_getkey(dn);
dict_delete_free(d, dn);
free(val);
free((void *) key);
break;
case 'f':
dict_free(d);
break;
case 'l':
case '(':
case ')':
if (tokenize(in+1, &tok1, (char **) 0) != 1) {
puts("what?");
break;
}
dn = 0;
switch (in[0]) {
case 'l':
dn = dict_lookup(d, tok1);
break;
case '(':
dn = dict_lower_bound(d, tok1);
break;
case ')':
dn = dict_upper_bound(d, tok1);
break;
}
if (!dn) {
puts("lookup failed");
break;
}
val = dnode_get(dn);
puts(val);
break;
case 'm':
construct(d);
break;
case 'k':
dict_allow_dupes(d);
break;
case 'c':
printf("%lu\n", (unsigned long) dict_count(d));
break;
case 't':
for (dn = dict_first(d); dn; dn = dict_next(d, dn)) {
printf("%s\t%s\n", (char *) dnode_getkey(dn),
(char *) dnode_get(dn));
}
break;
case 'q':
exit(0);
break;
case '\0':
break;
case 'p':
prompt = 1;
break;
case 's':
dict_set_allocator(d, new_node, del_node, NULL);
break;
case '#':
if (tokenize(in+1, &tok1, (char **) 0) != 1) {
puts("what?");
break;
} else {
int dictnum = atoi(tok1);
if (dictnum < 0 || dictnum > 9) {
puts("invalid number");
break;
}
d = &darray[dictnum];
}
break;
case 'j':
if (tokenize(in+1, &tok1, &tok2, (char **) 0) != 2) {
puts("what?");
break;
} else {
int dict1 = atoi(tok1), dict2 = atoi(tok2);
if (dict1 < 0 || dict1 > 9 || dict2 < 0 || dict2 > 9) {
puts("invalid number");
break;
}
dict_merge(&darray[dict1], &darray[dict2]);
}
break;
default:
putchar('?');
putchar('\n');
break;
}
}
return 0;
}
#endif
|