File: spgrid.c

package info (click to toggle)
quagga 0.99.5-5etch3
  • links: PTS
  • area: main
  • in suites: etch
  • size: 12,140 kB
  • ctags: 12,172
  • sloc: ansic: 170,694; sh: 10,447; perl: 639; makefile: 547; awk: 129; lisp: 62
file content (728 lines) | stat: -rw-r--r-- 18,553 bytes parent folder | download | duplicates (2)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
#include <stdio.h>
#include <stdlib.h>
#include <string.h>

#include "random.c"

#include <zebra.h>

#include "thread.h"
#include "vty.h"
#include "log.h"
#include "linklist.h"

#include "spgrid.h"


#define DASH '-'
#define VERY_FAR 100000000

#define DOUBLE_CYCLE   0
#define CYCLE          1
#define PATH           2

#define NO             0
#define YES            1

#define NODE( x, y ) (x*Y + y + 1)

const char   *graph_type[] =  {
  "double cycle",
  "cycle",
  "path"
};

struct arc *arc;

char   args[30];

long   X,   /* horizontal size of grid */
       Y;   /* vertical size of grid */

long   x,
       y,
       y1, y2, yp,
       dl, dx, xn, yn, count,
       *mess;

double n;
long   n0,
       source,
       i,
       i0,
       j,
       dij;

double m;
long   m0,
       mc,
       k;

long   *p,
       p_t,
       l,
       lx;

long   seed,
       seed1,
       seed2;

int    ext=0;

/* initialized by default values */

/* variables for generating one layer */

/* variables for generating spanning graph */
int    c_f = 0, cw_f = 0, cm_f = 0, cl_f = 0;

int    cw = DOUBLE_CYCLE;  /* type of spanning graph */
long   cm = 0,             /* lower bound of the interval */
       cl = 100;           /* upper bound of the interval */

/* variables for generating additional arcs */
int    a_f = 0, ax_f = 0, am_f = 0, al_f = 0;

long   ax = 0,             /* number of additional arcs */
       am = 0,             /* lower bound of the interval */
       al = 100;           /* upper bound of the interval */

/* variables for inter-layer arcs */
int    i_f = 0, ip_f = 0, ix_f = 0, ih_f = 0,
       im_f = 0, il_f = 0, in_f = 0, is_f = 0;

int    ip = NO;       /* to mess or not to mess */
long   ix = 1,        /* number of interlayered arcs in a NODE */
       ih = 1,        /* step between two layeres */
       il = 10000,    /* upper bound of the interval */
       im = 1000;     /* lower bound of the interval */
double in = 1,        /* l *=  in * |x1-x2| */
       is = 0;        /* l *=  is * |x1-x2|^2 */

/* variables for artifical source */
int    s_f = 0, sl_f = 0, sm_f = 0;
long   sl   = VERY_FAR, /* upper bound of artifical arc */
       sm,              /* lower bound of artifical arc */
       s;

/* variables for potentials */
int    p_f = 0, pl_f = 0, pm_f = 0, pn_f = 0, ps_f = 0;

long   pl,            /* upper bound of the interval */
       pm;            /* lower bound of the interval */
double pn = 0,        /* p +=  ln * (x+1) */
       ps = 0;        /* p +=  ls * (x+1)^2 */

int np;               /* number of parameter parsing now */


void
free_arc   (void *val) {
  free(val);
}

void
print_arc (struct vty *vty, struct list *topology, long i, long j, long length)
{
  struct arc *myarc;

  l = length;
  if ( p_f ) l += ( p[i] - p[j] );
//  vty_out (vty,"a %8ld %8ld %12ld%s", i, j, l ,VTY_NEWLINE);
  myarc = malloc (sizeof(struct arc));
  myarc->from_node = i;
  myarc->to_node = j;
  myarc->distance = l;
  topology->del = free_arc;
  listnode_add (topology, myarc);
}

/* ---- help ---- */
void
help (struct vty *vty) {
//  if ( args[2] == 'h') hhelp (vty);
  vty_out (vty,"grid network generator for shortest paths problem.%s",VTY_NEWLINE);
  vty_out (vty,"Generates problems in extended DIMACS format.%s",VTY_NEWLINE);
  vty_out (vty,"X Y seed [ -cl#i -cm#i -c{c|d|p} -ip -il#i -im#i -p -pl#i -pm#i... ]%s",VTY_NEWLINE);
  vty_out (vty,"#i - integer number%s",VTY_NEWLINE);
  vty_out (vty,"-cl#i - #i is the upper bound on layer arc lengths    (default 100)%s",VTY_NEWLINE);
  vty_out (vty,"-cm#i - #i is the lower bound on layer arc lengths    (default 0)%s",VTY_NEWLINE);
  vty_out (vty,"-c#t  - #t is the type of connecting graph: { c | d | p }%s",VTY_NEWLINE);
  vty_out (vty,"           c - cycle, d - double cycle, p - path      (default d)%s",VTY_NEWLINE);
  vty_out (vty,"-ip   - shuffle inter-layer arcs                     (default NO)%s",VTY_NEWLINE);
  vty_out (vty,"-il#i - #i is the upper bound on inter-layer arc lengths (default 10000)%s",VTY_NEWLINE);
  vty_out (vty,"-im#i - #i is the lower bound on inter-layer arc lengths (default 1000)%s",VTY_NEWLINE);
  vty_out (vty,"-p    - generate potentials%s",VTY_NEWLINE);
  vty_out (vty,"-pl#i - #i is the upper bound on potentials           (default il)%s",VTY_NEWLINE);
  vty_out (vty,"-pm#i - #i is the lower bound on potentials           (default im)%s",VTY_NEWLINE);
  vty_out (vty,"%s",VTY_NEWLINE);
  vty_out (vty,"-hh    - extended help%s",VTY_NEWLINE);
}

/* --------- sophisticated help ------------ */
void
hhelp (struct vty *vty) {
/*
zlog_info (
"\n'%s' - grid network generator for shortest paths problem.\n\
Generates problems in extended DIMACS format.\n\
\n\
   %s  X Y seed [ -cl#i -cm#i -c{c|d|p}\n\
                      -ax#i -al#i -am#i\n\
                      -ip   -il#i -im#i -in#i -is#i -ix#i -ih#i\n\
                      -p    -pl#i -pm#i -pn#f -ps#f\n\
                      -s    -sl#i -sm#i\n\
                    ]\n\
   %s -hh file_name\n\
\n\
                        #i - integer number   #f - real number\n\
\n\
      Parameters of connecting arcs within one layer:\n\
-cl#i - #i is the upper bound on arc lengths          (default 100)\n\
-cm#i - #i is the lower bound on arc lengths          (default 0)\n\
-c#t  - #t is the type of connecting graph: { c | d | p }\n\
           c - cycle, d - double cycle, p - path      (default d)\n\
\n\
      Parameters of additional arcs within one layer:\n\
-ax#i - #i is the number of additional arcs           (default 0)\n\
-al#i - #i is the upper bound on arc lengths          (default 100)\n\
-am#i - #i is the lower bound on arc lengths          (default 0)\n\
\n\
      Interlayerd arc parameters:\n\
-ip    - shuffle inter-layer arcs                         (default NO)\n\
-il#i  - #i is the upper bound on arc lengths          (default 10000)\n\
-im#i  - #i is the lower bound on arc lengths          (default 1000)\n\
-in#f  - multiply l(i, j) by #f * x(j)-x(i)           (default 1)\n\
         if #f=0 - don't multiply\n\
-is#f  - multiply l(i, j) by #f * (x(j)-x(i))^2       (default NO)\n\
-ix#i  - #i - is the number of arcs from a node        (default 1)\n\
-ih#i  - #i - is the step between connected layers     (default 1)\n\
\n\
      Potential parameters:\n\
-p     - generate potentials \n\
-pl#i  - #i is the upper bound on potentials           (default ll)\n\
-pm#i  - #i is the lower bound on potentials           (default lm)\n\
-pn#f  - multiply p(i) by #f * x(i)                    (default NO)\n\
-ps#f  - multiply p(i) by #f * x(i)^2                  (default NO)\n\
\n");
zlog_info (
"     Artificial source parameters:\n\
-s     - generate artificial source with default connecting arc lengths\n\
-sl#i  - #i is the upper bound on art. arc lengths    (default 100000000)\n\
-sm#i  - #i is the lower bound on art. arc lengths    (default sl)\n\"
);*/
}

/* ----- wrong usage ----- */
void
usage (struct vty *vty) {
  vty_out (vty,"usage: X Y seed [-ll#i -lm#i -cl#i -p -pl#i -pm#i ...]%s",VTY_NEWLINE);
  vty_out (vty,"help: -h or -hh%s",VTY_NEWLINE);

  if ( np > 0 )
    zlog_err ("error in parameter # %d\n\n", np );
}


/* parsing  parameters */
/* checks the validity of incoming parameters */
int
spgrid_check_params ( struct vty *vty, int argc, const char **argv)
{
/* initialized by default values */
  ext=0;

/* variables for generating one layer */

/* variables for generating spanning graph */
  c_f = 0;
  cw_f = 0;
  cm_f = 0;
  cl_f = 0;

  cw = PATH;  /* type of spanning graph */
  cm = 0;             /* lower bound of the interval */
  cl = 63;           /* upper bound of the interval */

/* variables for generating additional arcs */
  a_f = 0;
  ax_f = 0;
  am_f = 0;
  al_f = 0;

  ax = 0;             /* number of additional arcs */
  am = 0;             /* lower bound of the interval */
  al = 63;           /* upper bound of the interval */

/* variables for inter-layer arcs */
  i_f = 0;
  ip_f = 0;
  ix_f = 0;
  ih_f = 0;
  im_f = 0;
  il_f = 0;
  in_f = 0;
  is_f = 0;

  ip = NO;       /* to mess or not to mess */
  ix = 1;        /* number of interlayered arcs in a NODE */
  ih = 1;        /* step between two layeres */
  il = 63; //was 10000;    /* upper bound of the interval */
  im = 0;  //was 1000;     /* lower bound of the interval */
  in = 1;        /* l *=  in * |x1-x2| */
  is = 0;        /* l *=  is * |x1-x2|^2 */

/* variables for artifical source */
  s_f = 0;
  sl_f = 0;
  sm_f = 0;
  sl   = VERY_FAR; /* upper bound of artifical arc */

/* variables for potentials */
  p_f = 0;
  pl_f = 0;
  pm_f = 0;
  pn_f = 0;
  ps_f = 0;

  pn = 0;        /* p +=  ln * (x+1) */
  ps = 0;        /* p +=  ls * (x+1)^2 */


  if ( argc < 1 ) {
    usage (vty);
    return 1;
  }

  np = 0;

  strcpy ( args, argv[0] );

  if ((args[0] == DASH) && (args[1] == 'h'))
    help (vty);

  if ( argc < 3 ) {
    usage (vty);
    return 1;
  }

  /* first parameter - horizontal size */
  np = 1;
  if ( ( X = atoi ( argv[0] ) )  <  1  ) {
    usage (vty);
    return 1;
  }

  /* second parameter - vertical size */
  np = 2;
  if ( ( Y = atoi ( argv[1] ) )  <  1  ) {
    usage (vty);
    return 1;
  }

  /* third parameter - seed */
  np=3;
  if ( ( seed = atoi ( argv[2] ) )  <=  0  ) {
    usage (vty);
    return 1;
  }

  /* other parameters */
  for ( np = 3; np < argc; np ++ ) {
    strcpy ( args, argv[np] );
    if ( args[0] != DASH )  {
      usage (vty);
      return 1;
    }

    switch ( args[1] ) {
      case 'c' : /* spanning graph in one layer */
        c_f = 1;
        switch ( args[2] ) {
          case 'l': /* upper bound of the interval */
            cl_f = 1;
            cl  =  atol ( &args[3] );
            break;
          case 'm': /* lower bound */
            cm_f = 1;
            cm  = atol ( &args[3] );
            break;
          case 'c': /* type - cycle */
            cw_f = 1;
            cw   = CYCLE;
            break;
          case 'd': /* type - double cycle */
            cw_f = 1;
            cw   = DOUBLE_CYCLE;
            break;
          case 'p': /* type - path */
            cw_f = 1;
            cw   = PATH;
            break;

          default:  /* unknown switch  value */
            usage (vty);
            return 1;
          }
        break;

      case 'a' : /* additional arcs in one layer */
         a_f = 1;
        switch ( args[2] )
          {
          case 'l': /* upper bound of the interval */
            al_f = 1;
            al  =  atol ( &args[3] );
            break;
          case 'm': /* lower bound */
            am_f = 1;
            am  = atol ( &args[3] );
            break;
          case 'x': /* number of additional arcs */
            ax_f = 1;
            ax   = atol ( &args[3] );
            if ( ax < 0 )
             {
               usage (vty);
               return 1;
             }
            break;

          default:  /* unknown switch  value */
            {
              usage (vty);
              return 1;
            }
          }
        break;


      case 'i' : /* interlayered arcs */
        i_f = 1;

        switch ( args[2] )
          {
          case 'l': /* upper bound */
            il_f = 1;
            il  =  atol ( &args[3] );
            break;
          case 'm': /* lower bound */
            im_f = 1;
            im  = atol ( &args[3] );
            break;
          case 'n': /* additional length: l *= in*|i1-i2| */
            in_f = 1;
            in  = atof ( &args[3] );
            break;
          case 's': /* additional length: l *= is*|i1-i2|^2 */
            is_f = 1;
            is  = atof ( &args[3] );
            break;
          case 'p': /* mess interlayered arcs */
            ip_f = 1;
            ip = YES;
            break;
          case 'x': /* number of interlayered arcs */
            ix_f = 1;
            ix  = atof ( &args[3] );
            if ( ix < 1 ) {
              usage (vty);
              return 1;
            }
            break;
          case 'h': /* step between two layeres */
            ih_f = 1;
            ih  = atof ( &args[3] );
            if ( ih < 1 ) {
               usage (vty);
               return 1;
             }
            break;
          default:  /* unknown switch  value */
            usage (vty);
            return 1;
          }
        break;

      case 's' : /* additional source */
        s_f = 1;
        if ( strlen ( args ) > 2 )
        {
        switch ( args[2] )
          {
          case 'l': /* upper bound of art. arc */
            sl_f = 1;
            sl  =  atol ( &args[3] );
            break;
          case 'm': /* lower bound of art. arc */
            sm_f = 1;
            sm  =  atol ( &args[3] );
            break;
          default:  /* unknown switch  value */
            usage (vty);
            return 1;
          }
         }
        break;

      case 'p' : /* potentials */
        p_f = 1;
        if ( strlen ( args ) > 2 )
        {
        switch ( args[2] )
          {
          case 'l': /* upper bound */
            pl_f = 1;
            pl  =  atol ( &args[3] );
            break;
          case 'm': /* lower bound */
            pm_f = 1;
            pm  = atol ( &args[3] );
            break;
          case 'n': /* additional: p *= pn*(x+1) */
            pn_f = 1;
            pn  = atof ( &args[3] );
            break;
          case 's': /* additional: p = ps* (x+1)^2 */
            ps_f = 1;
            ps  = atof ( &args[3] );
            break;
          default:  /* unknown switch  value */
            usage (vty);
            return 1;
          }
        }
        break;

      default: /* unknoun case */
        usage (vty);
        return 1;
      }
  }


  return 0;
}


/* generator of layered networks for the shortest paths problem;
   extended DIMACS format for output */
int
gen_spgrid_topology (struct vty *vty, struct list *topology)
{
  /* ----- ajusting parameters ----- */

  /* spanning */
  if ( cl < cm ) { lx = cl; cl = cm; cm = lx; }

  /* additional arcs */
  if ( al < am ) { lx = al; al = am; am = lx; }

  /* interlayered arcs */
  if ( il < im ) { lx = il; il = im; im = lx; }

  /* potential parameters */
  if ( p_f )
    {
     if ( ! pl_f ) pl = il;
     if ( ! pm_f ) pm = im;
     if ( pl < pm ) { lx = pl; pl = pm; pm = lx; }
    }

  /* number of nodes and arcs */

  n = (double)X *(double)Y + 1;

  m  = (double)Y; /* arcs from source */

  switch ( cw )
  {
   case PATH:
    mc = (double)Y - 1;
    break;
   case CYCLE:
    mc = (double)Y;
    break;
   case DOUBLE_CYCLE:
    mc = 2*(double)Y;
  }

  m += (double)X * (double)mc;  /* spanning arcs */
  m += (double)X * (double)ax;  /* additional arcs */

  /* interlayered arcs */
  for ( x = 0; x < X; x ++ )
  {
    dl = ( ( X - x - 1 ) + ( ih - 1 ) ) / ih;
    if ( dl > ix ) dl = ix;
    m += (double)Y * (double)dl;
  }

   /* artifical source parameters */
  if ( s_f ) {
    m += n; n ++ ;
    if ( ! sm_f ) sm = sl;
    if ( sl < sm ) { lx = sl; sl = sm; sm = lx; }
  }

  if ( n >= (double)LONG_MAX || m >= (double)LONG_MAX )
  {
    zlog_err ("Too large problem. It can't be generated\n");
    exit (4);
  }
   else
  {
    n0 = (long)n; m0 = (long)m;
  }

  if ( ip_f )
     mess = (long*) calloc ( Y, sizeof ( long ) );

  /* printing title */
  zlog_info ("Generating topology for ISIS");

  source = ( s_f ) ? n0-1 : n0;

  if ( p_f ) /* generating potentials */ {
    p = (long*) calloc ( n0+1, sizeof (long) );
    seed1 = 2*seed + 1;
    init_rand ( seed1);
    pl = pl - pm + 1;

    for ( x = 0; x < X; x ++ )
      for ( y = 0; y < Y; y ++ ) {
        p_t = pm + nrand ( pl );
        if ( pn_f ) p_t *= (long) ( (1 + x) * pn );
        if ( ps_f ) p_t *= (long) ( (1 + x) * ( (1 + x) * ps ));

        p[ NODE ( x, y ) ] = p_t;
      }
      p[n0] = 0;
      if ( s_f ) p[n0-1] = 0;
    }

  if ( s_f ) /* additional arcs from artifical source */
    {
      seed2 = 3*seed + 1;
      init_rand ( seed2 );
      sl = sl - sm + 1;

      for ( x = X - 1; x >= 0; x -- )
        for ( y = Y - 1; y >= 0; y -- )
        {
          i = NODE ( x, y );
          s = sm + nrand ( sl );
          print_arc (vty, topology,  n0, i, s );
        }

      print_arc (vty, topology,  n0, n0-1, 0 );
    }


  /* ----- generating arcs within layers ----- */

  init_rand ( seed );
  cl = cl - cm + 1;
  al = al - am + 1;

  for ( x = 0; x < X; x ++ )
   {
  /* generating arcs within one layer */
    for ( y = 0; y < Y-1; y ++ )
    {
       /* generating spanning graph */
       i = NODE ( x, y );
       j = NODE ( x, y+1 );
       l = cm + nrand ( cl );
       print_arc (vty, topology,  i, j, l );

       if ( cw == DOUBLE_CYCLE )
         {
           l = cm + nrand ( cl );
           print_arc (vty, topology,  j, i, l );
         }
     }

    if ( cw <= CYCLE )
      {
        i = NODE ( x, Y-1 );
        j = NODE ( x, 0 );
        l = cm + nrand ( cl );
        print_arc (vty, topology,  i, j, l );

        if ( cw == DOUBLE_CYCLE )
          {
  	  l = cm + nrand ( cl );
            print_arc (vty, topology,  j, i, l );
          }
       }

  /* generating additional arcs */

    for ( k = ax; k > 0; k -- )
       {
         y1 = nrand ( Y );
         do
            y2 = nrand ( Y );
         while ( y2 == y1 );
         i  = NODE ( x, y1 );
         j  = NODE ( x, y2 );
         l = am + nrand ( al );
         print_arc (vty, topology,  i, j, l );
       }
   }

  /* ----- generating interlayered arcs ------ */

  il = il - im + 1;

  /* arcs from the source */

    for ( y = 0; y < Y; y ++ )
      {
        l = im + nrand ( il );
        i = NODE ( 0, y );
        print_arc (vty, topology,  source, i, l );
      }

  for ( x = 0; x < X-1; x ++ )
   {
  /* generating arcs from one layer */
     for ( count = 0, xn = x + 1;
           count < ix && xn < X;
           count ++, xn += ih )
      {
        if ( ip_f )
        for ( y = 0; y < Y; y ++ )
  	mess[y] = y;

        for ( y = 0; y < Y; y ++ )
         {
            i = NODE ( x, y );
  	  dx = xn - x;
  	  if ( ip_f )
  	    {
  	      yp = nrand(Y-y);
  	      yn = mess[ yp ];
                mess[ yp ] = mess[ Y - y - 1 ];
  	    }
  	  else
               yn =  y;
  	  j = NODE ( xn, yn );
  	  l = im + nrand ( il );
  	  if ( in != 0 )
              l *= (long) ( in * dx );
            if ( is_f )
              l *= (long) ( ( is * dx ) * dx );
            print_arc (vty, topology,  i, j, l );
  	}
      }
   }
  /* all is done */
  return ext;

return 0;
}