1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527
|
/*
Copyright (C) 1996-2001 Id Software, Inc.
Copyright (C) 2010-2011 O. Sezer <sezero@users.sourceforge.net>
Copyright (C) 2010-2014 QuakeSpasm developers
This program is free software; you can redistribute it and/or
modify it under the terms of the GNU General Public License
as published by the Free Software Foundation; either version 2
of the License, or (at your option) any later version.
This program is distributed in the hope that it will be useful,
but WITHOUT ANY WARRANTY; without even the implied warranty of
MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.
See the GNU General Public License for more details.
You should have received a copy of the GNU General Public License
along with this program; if not, write to the Free Software
Foundation, Inc., 59 Temple Place - Suite 330, Boston, MA 02111-1307, USA.
*/
// snd_mix.c -- portable code to mix sounds for snd_dma.c
#include "quakedef.h"
#define PAINTBUFFER_SIZE 2048
portable_samplepair_t paintbuffer[PAINTBUFFER_SIZE];
int snd_scaletable[32][256];
int *snd_p, snd_linear_count;
short *snd_out;
static int snd_vol;
static void Snd_WriteLinearBlastStereo16 (void)
{
int i;
int val;
for (i = 0; i < snd_linear_count; i += 2)
{
val = snd_p[i] / 256;
if (val > 0x7fff)
snd_out[i] = 0x7fff;
else if (val < (short)0x8000)
snd_out[i] = (short)0x8000;
else
snd_out[i] = val;
val = snd_p[i+1] / 256;
if (val > 0x7fff)
snd_out[i+1] = 0x7fff;
else if (val < (short)0x8000)
snd_out[i+1] = (short)0x8000;
else
snd_out[i+1] = val;
}
}
static void S_TransferStereo16 (int endtime)
{
int lpos;
int lpaintedtime;
snd_p = (int *) paintbuffer;
lpaintedtime = paintedtime;
while (lpaintedtime < endtime)
{
// handle recirculating buffer issues
lpos = lpaintedtime & ((shm->samples >> 1) - 1);
snd_out = (short *)shm->buffer + (lpos << 1);
snd_linear_count = (shm->samples >> 1) - lpos;
if (lpaintedtime + snd_linear_count > endtime)
snd_linear_count = endtime - lpaintedtime;
snd_linear_count <<= 1;
// write a linear blast of samples
Snd_WriteLinearBlastStereo16 ();
snd_p += snd_linear_count;
lpaintedtime += (snd_linear_count >> 1);
}
}
static void S_TransferPaintBuffer (int endtime)
{
int out_idx, out_mask;
int count, step, val;
int *p;
if (shm->samplebits == 16 && shm->channels == 2)
{
S_TransferStereo16 (endtime);
return;
}
p = (int *) paintbuffer;
count = (endtime - paintedtime) * shm->channels;
out_mask = shm->samples - 1;
out_idx = paintedtime * shm->channels & out_mask;
step = 3 - shm->channels;
if (shm->samplebits == 16)
{
short *out = (short *)shm->buffer;
while (count--)
{
val = *p / 256;
p+= step;
if (val > 0x7fff)
val = 0x7fff;
else if (val < (short)0x8000)
val = (short)0x8000;
out[out_idx] = val;
out_idx = (out_idx + 1) & out_mask;
}
}
else if (shm->samplebits == 8 && !shm->signed8)
{
unsigned char *out = shm->buffer;
while (count--)
{
val = *p / 256;
p+= step;
if (val > 0x7fff)
val = 0x7fff;
else if (val < (short)0x8000)
val = (short)0x8000;
out[out_idx] = (val / 256) + 128;
out_idx = (out_idx + 1) & out_mask;
}
}
else if (shm->samplebits == 8) /* S8 format, e.g. with Amiga AHI */
{
signed char *out = (signed char *) shm->buffer;
while (count--)
{
val = *p / 256;
p+= step;
if (val > 0x7fff)
val = 0x7fff;
else if (val < (short)0x8000)
val = (short)0x8000;
out[out_idx] = (val / 256);
out_idx = (out_idx + 1) & out_mask;
}
}
}
/*
==============
S_MakeBlackmanWindowKernel
Makes a lowpass filter kernel, from equation 16-4 in
"The Scientist and Engineer's Guide to Digital Signal Processing"
M is the kernel size (not counting the center point), must be even
kernel has room for M+1 floats
f_c is the filter cutoff frequency, as a fraction of the samplerate
==============
*/
static void S_MakeBlackmanWindowKernel(float *kernel, int M, float f_c)
{
int i;
for (i = 0; i <= M; i++)
{
if (i == M/2)
{
kernel[i] = 2 * M_PI * f_c;
}
else
{
kernel[i] = ( sin(2 * M_PI * f_c * (i - M/2.0)) / (i - (M/2.0)) )
* (0.42 - 0.5*cos(2 * M_PI * i / (double)M)
+ 0.08*cos(4 * M_PI * i / (double)M) );
}
}
// normalize the kernel so all of the values sum to 1
{
float sum = 0;
for (i = 0; i <= M; i++)
{
sum += kernel[i];
}
for (i = 0; i <= M; i++)
{
kernel[i] /= sum;
}
}
}
typedef struct {
float *memory; // kernelsize floats
float *kernel; // kernelsize floats
int kernelsize; // M+1, rounded up to be a multiple of 16
int M; // M value used to make kernel, even
int parity; // 0-3
float f_c; // cutoff frequency, [0..1], fraction of sample rate
} filter_t;
static void S_UpdateFilter(filter_t *filter, int M, float f_c)
{
if (filter->f_c != f_c || filter->M != M)
{
if (filter->memory != NULL) free(filter->memory);
if (filter->kernel != NULL) free(filter->kernel);
filter->M = M;
filter->f_c = f_c;
filter->parity = 0;
// M + 1 rounded up to the next multiple of 16
filter->kernelsize = (M + 1) + 16 - ((M + 1) % 16);
filter->memory = (float *) calloc(filter->kernelsize, sizeof(float));
filter->kernel = (float *) calloc(filter->kernelsize, sizeof(float));
S_MakeBlackmanWindowKernel(filter->kernel, M, f_c);
}
}
/*
==============
S_ApplyFilter
Lowpass-filter the given buffer containing 44100Hz audio.
As an optimization, it decimates the audio to 11025Hz (setting every sample
position that's not a multiple of 4 to 0), then convoluting with the filter
kernel is 4x faster, because we can skip 3/4 of the input samples that are
known to be 0 and skip 3/4 of the filter kernel.
==============
*/
static void S_ApplyFilter(filter_t *filter, int *data, int stride, int count)
{
int i, j;
float *input;
const int kernelsize = filter->kernelsize;
const float *kernel = filter->kernel;
int parity;
input = (float *) malloc(sizeof(float) * (filter->kernelsize + count));
// set up the input buffer
// memory holds the previous filter->kernelsize samples of input.
memcpy(input, filter->memory, filter->kernelsize * sizeof(float));
for (i=0; i<count; i++)
{
input[filter->kernelsize+i] = data[i * stride] / (32768.0 * 256.0);
}
// copy out the last filter->kernelsize samples to 'memory' for next time
memcpy(filter->memory, input + count, filter->kernelsize * sizeof(float));
// apply the filter
parity = filter->parity;
for (i=0; i<count; i++)
{
const float *input_plus_i = input + i;
float val[4] = {0, 0, 0, 0};
for (j = (4 - parity) % 4; j < kernelsize; j+=16)
{
val[0] += kernel[j] * input_plus_i[j];
val[1] += kernel[j+4] * input_plus_i[j+4];
val[2] += kernel[j+8] * input_plus_i[j+8];
val[3] += kernel[j+12] * input_plus_i[j+12];
}
// 4.0 factor is to increase volume by 12 dB; this is to make up the
// volume drop caused by the zero-filling this filter does.
data[i * stride] = (val[0] + val[1] + val[2] + val[3])
* (32768.0 * 256.0 * 4.0);
parity = (parity + 1) % 4;
}
filter->parity = parity;
free(input);
}
/*
==============
S_LowpassFilter
lowpass filters 24-bit integer samples in 'data' (stored in 32-bit ints).
assumes 44100Hz sample rate, and lowpasses at around 5kHz
memory should be a zero-filled filter_t struct
==============
*/
static void S_LowpassFilter(int *data, int stride, int count,
filter_t *memory)
{
int M;
float bw, f_c;
switch ((int)snd_filterquality.value)
{
case 1:
M = 126; bw = 0.900; break;
case 2:
M = 150; bw = 0.915; break;
case 3:
M = 174; bw = 0.930; break;
case 4:
M = 198; bw = 0.945; break;
case 5:
default:
M = 222; bw = 0.960; break;
}
f_c = (bw * 11025 / 2.0) / 44100.0;
S_UpdateFilter(memory, M, f_c);
S_ApplyFilter(memory, data, stride, count);
}
/*
===============================================================================
CHANNEL MIXING
===============================================================================
*/
static void SND_PaintChannelFrom8 (channel_t *ch, sfxcache_t *sc, int endtime, int paintbufferstart);
static void SND_PaintChannelFrom16 (channel_t *ch, sfxcache_t *sc, int endtime, int paintbufferstart);
void S_PaintChannels (int endtime)
{
int i;
int end, ltime, count;
channel_t *ch;
sfxcache_t *sc;
snd_vol = sfxvolume.value * 256;
while (paintedtime < endtime)
{
// if paintbuffer is smaller than DMA buffer
end = endtime;
if (endtime - paintedtime > PAINTBUFFER_SIZE)
end = paintedtime + PAINTBUFFER_SIZE;
// clear the paint buffer
memset(paintbuffer, 0, (end - paintedtime) * sizeof(portable_samplepair_t));
// paint in the channels.
ch = snd_channels;
for (i = 0; i < total_channels; i++, ch++)
{
if (!ch->sfx)
continue;
if (!ch->leftvol && !ch->rightvol)
continue;
sc = S_LoadSound (ch->sfx);
if (!sc)
continue;
ltime = paintedtime;
while (ltime < end)
{ // paint up to end
if (ch->end < end)
count = ch->end - ltime;
else
count = end - ltime;
if (count > 0)
{
// the last param to SND_PaintChannelFrom is the index
// to start painting to in the paintbuffer, usually 0.
if (sc->width == 1)
SND_PaintChannelFrom8(ch, sc, count, ltime - paintedtime);
else
SND_PaintChannelFrom16(ch, sc, count, ltime - paintedtime);
ltime += count;
}
// if at end of loop, restart
if (ltime >= ch->end)
{
if (sc->loopstart >= 0)
{
ch->pos = sc->loopstart;
ch->end = ltime + sc->length - ch->pos;
}
else
{ // channel just stopped
ch->sfx = NULL;
break;
}
}
}
}
// clip each sample to 0dB, then reduce by 6dB (to leave some headroom for
// the lowpass filter and the music). the lowpass will smooth out the
// clipping
for (i=0; i<end-paintedtime; i++)
{
paintbuffer[i].left = CLAMP(-32768 * 256, paintbuffer[i].left, 32767 * 256) / 2;
paintbuffer[i].right = CLAMP(-32768 * 256, paintbuffer[i].right, 32767 * 256) / 2;
}
// apply a lowpass filter
if (sndspeed.value == 11025 && shm->speed == 44100)
{
static filter_t memory_l, memory_r;
S_LowpassFilter((int *)paintbuffer, 2, end - paintedtime, &memory_l);
S_LowpassFilter(((int *)paintbuffer) + 1, 2, end - paintedtime, &memory_r);
}
// paint in the music
if (s_rawend >= paintedtime)
{ // copy from the streaming sound source
int s;
int stop;
stop = (end < s_rawend) ? end : s_rawend;
for (i = paintedtime; i < stop; i++)
{
s = i & (MAX_RAW_SAMPLES - 1);
// lower music by 6db to match sfx
paintbuffer[i - paintedtime].left += s_rawsamples[s].left / 2;
paintbuffer[i - paintedtime].right += s_rawsamples[s].right / 2;
}
// if (i != end)
// Con_Printf ("partial stream\n");
// else
// Con_Printf ("full stream\n");
}
// transfer out according to DMA format
S_TransferPaintBuffer(end);
paintedtime = end;
}
}
void SND_InitScaletable (void)
{
int i, j;
int scale;
for (i = 0; i < 32; i++)
{
scale = i * 8 * 256 * sfxvolume.value;
for (j = 0; j < 256; j++)
{
/* When compiling with gcc-4.1.0 at optimisations O1 and
higher, the tricky signed char type conversion is not
guaranteed. Therefore we explicity calculate the signed
value from the index as required. From Kevin Shanahan.
See: http://gcc.gnu.org/bugzilla/show_bug.cgi?id=26719
*/
// snd_scaletable[i][j] = ((signed char)j) * scale;
snd_scaletable[i][j] = ((j < 128) ? j : j - 256) * scale;
}
}
}
static void SND_PaintChannelFrom8 (channel_t *ch, sfxcache_t *sc, int count, int paintbufferstart)
{
int data;
int *lscale, *rscale;
unsigned char *sfx;
int i;
if (ch->leftvol > 255)
ch->leftvol = 255;
if (ch->rightvol > 255)
ch->rightvol = 255;
lscale = snd_scaletable[ch->leftvol >> 3];
rscale = snd_scaletable[ch->rightvol >> 3];
sfx = (unsigned char *)sc->data + ch->pos;
for (i = 0; i < count; i++)
{
data = sfx[i];
paintbuffer[paintbufferstart + i].left += lscale[data];
paintbuffer[paintbufferstart + i].right += rscale[data];
}
ch->pos += count;
}
static void SND_PaintChannelFrom16 (channel_t *ch, sfxcache_t *sc, int count, int paintbufferstart)
{
int data;
int left, right;
int leftvol, rightvol;
signed short *sfx;
int i;
leftvol = ch->leftvol * snd_vol;
rightvol = ch->rightvol * snd_vol;
leftvol /= 256;
rightvol /= 256;
sfx = (signed short *)sc->data + ch->pos;
for (i = 0; i < count; i++)
{
data = sfx[i];
// this was causing integer overflow as observed in quakespasm
// with the warpspasm mod moved >>8 to left/right volume above.
// left = (data * leftvol) >> 8;
// right = (data * rightvol) >> 8;
left = data * leftvol;
right = data * rightvol;
paintbuffer[paintbufferstart + i].left += left;
paintbuffer[paintbufferstart + i].right += right;
}
ch->pos += count;
}
|