1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193
|
/*
Copyright (C) 2000, 2001, 2002 RiskMap srl
This file is part of QuantLib, a free-software/open-source library
for financial quantitative analysts and developers - http://quantlib.org/
QuantLib is free software: you can redistribute it and/or modify it under the
terms of the QuantLib license. You should have received a copy of the
license along with this program; if not, please email ferdinando@ametrano.net
The license is also available online at http://quantlib.org/html/license.html
This program is distributed in the hope that it will be useful, but WITHOUT
ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or FITNESS
FOR A PARTICULAR PURPOSE. See the license for more details.
*/
// $Id: Matrix.i,v 1.15 2002/03/04 17:25:41 lballabio Exp $
#ifndef quantlib_matrix_i
#define quantlib_matrix_i
%include String.i
%include QLArray.i
%{
using QuantLib::Math::Matrix;
typedef QuantLib::Math::Matrix::row_iterator MatrixRow;
using QuantLib::Math::outerProduct;
using QuantLib::Math::transpose;
using QuantLib::Math::matrixSqrt;
%}
class MatrixRow {
private:
// access control - no constructor exported
MatrixRow();
public:
~MatrixRow();
};
%addmethods MatrixRow {
double __getitem__(int i) {
return (*self)[i];
}
void __setitem__(int i, double x) {
(*self)[i] = x;
}
};
// typemap Python list of lists of numbers to Matrix
%typemap(python,in) Matrix (Matrix temp),
Matrix & (Matrix temp),
const Matrix & (Matrix temp) {
Matrix* m;
if (PyTuple_Check($source) || PyList_Check($source)) {
/* Size */ int rows, cols;
rows = (PyTuple_Check($source) ?
PyTuple_Size($source) :
PyList_Size($source));
// look ahead
PyObject* o = PySequence_GetItem($source,0);
if (PyTuple_Check(o) || PyList_Check(o)) {
cols = (PyTuple_Check(o) ?
PyTuple_Size(o) :
PyList_Size(o));
Py_DECREF(o);
} else {
PyErr_SetString(PyExc_TypeError, "Matrix expected");
Py_DECREF(o);
return NULL;
}
temp = Matrix(rows,cols);
for (/* Size */ int i=0; i<rows; i++) {
PyObject* o = PySequence_GetItem($source,i);
if (PyTuple_Check(o) || PyList_Check(o)) {
/* Size */ int items = (PyTuple_Check(o) ?
PyTuple_Size(o) :
PyList_Size(o));
if (items != cols) {
PyErr_SetString(PyExc_TypeError,
"Matrix must have equal-length rows");
Py_DECREF(o);
return NULL;
}
for (/* Size */ int j=0; j<cols; j++) {
PyObject* d = PySequence_GetItem(o,j);
if (d == Py_None) {
temp[i][j] = Null<double>();
Py_DECREF(d);
} else if (PyFloat_Check(d)) {
temp[i][j] = PyFloat_AsDouble(d);
Py_DECREF(d);
} else if (PyInt_Check(d)) {
temp[i][j] = double(PyInt_AsLong(d));
Py_DECREF(d);
} else {
PyErr_SetString(PyExc_TypeError,"doubles expected");
Py_DECREF(d);
Py_DECREF(o);
return NULL;
}
}
Py_DECREF(o);
} else {
PyErr_SetString(PyExc_TypeError, "Matrix expected");
Py_DECREF(o);
return NULL;
}
}
$target = &temp;
} else if ((SWIG_ConvertPtr($source,(void **) &m,
SWIGTYPE_p_Matrix,0)) != -1) {
$target = m;
} else {
PyErr_SetString(PyExc_TypeError,"Matrix expected");
return NULL;
}
};
class Matrix {
private:
Matrix(); // redefined below
public:
~Matrix();
/* Size */ int rows() const;
/* Size */ int columns() const;
};
%addmethods Matrix {
Matrix(const Matrix& m) {
return new Matrix(m);
}
MatrixRow __getitem__(int i) {
return (*self)[i];
}
Matrix __add__(const Matrix& m) {
return *self+m;
}
Matrix __iadd__(const Matrix& m) {
return *self+m;
}
Matrix __sub__(const Matrix& m) {
return *self-m;
}
Matrix __isub__(const Matrix& m) {
return *self-m;
}
Matrix __mul__(double x) {
return *self*x;
}
Matrix __imul__(double x) {
return *self*x;
}
Matrix __rmul__(double x) {
return *self*x;
}
Matrix __div__(double x) {
return *self/x;
}
Matrix __idiv__(double x) {
return *self/x;
}
String __str__() {
String s;
for (/* Size */ unsigned int j=0; j<self->rows(); j++) {
s += "\n";
s += QuantLib::DoubleFormatter::toString((*self)[j][0]);
for (/* Size */ unsigned int i=1; i<self->columns(); i++) {
s += ",";
s += QuantLib::DoubleFormatter::toString((*self)[j][i]);
}
}
s += "\n";
return s;
}
};
// functions
Matrix transpose(const Matrix& m);
Matrix outerProduct(const Array& v1, const Array& v2);
%inline %{
Matrix matrixProduct(const Matrix& m1, const Matrix& m2) {
return m1*m2;
}
%}
Matrix matrixSqrt(const Matrix& m);
#endif
|