File: Solvers1D.i

package info (click to toggle)
quantlib-python 0.2.1.cvs20020322-1
  • links: PTS
  • area: main
  • in suites: woody
  • size: 2,040 kB
  • ctags: 3,245
  • sloc: cpp: 32,997; python: 7,156; makefile: 70
file content (108 lines) | stat: -rw-r--r-- 2,487 bytes parent folder | download
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108

/*
 Copyright (C) 2000, 2001, 2002 RiskMap srl

 This file is part of QuantLib, a free-software/open-source library
 for financial quantitative analysts and developers - http://quantlib.org/

 QuantLib is free software: you can redistribute it and/or modify it under the
 terms of the QuantLib license.  You should have received a copy of the
 license along with this program; if not, please email ferdinando@ametrano.net
 The license is also available online at http://quantlib.org/html/license.html

 This program is distributed in the hope that it will be useful, but WITHOUT
 ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or FITNESS
 FOR A PARTICULAR PURPOSE.  See the license for more details.
*/

// $Id: Solvers1D.i,v 1.9 2002/01/16 14:50:51 nando Exp $

#ifndef quantlib_solver1d_i
#define quantlib_solver1d_i

%include Functions.i

// 1D Solver interface

%{
using QuantLib::Solver1D;
using QuantLib::Solvers1D::Bisection;
using QuantLib::Solvers1D::Brent;
using QuantLib::Solvers1D::FalsePosition;
using QuantLib::Solvers1D::Newton;
using QuantLib::Solvers1D::NewtonSafe;
using QuantLib::Solvers1D::Ridder;
using QuantLib::Solvers1D::Secant;
%}

class Solver1D {
  private:
    // abstract class - no constructor exported
    Solver1D();
  public:
    ~Solver1D();
    void setMaxEvaluations(int evaluations);
    void setLowBound(double lowBound);
    void setHiBound(double hiBound);
};

%addmethods Solver1D {
    double solve(PyObject* pyFunction, double xAccuracy, double guess,
        double step) {
            PyObjectiveFunction f(pyFunction);
            return self->solve(f, xAccuracy, guess, step);
    }
    double bracketedSolve(PyObject* pyFunction, double xAccuracy,
        double guess, double xMin, double xMax) {
            PyObjectiveFunction f(pyFunction);
            return self->solve(f, xAccuracy, guess, xMin, xMax);
    }
}


// Actual solvers

class Brent : public Solver1D {
  public:
    Brent();
    ~Brent();
};

class Bisection : public Solver1D {
  public:
    Bisection();
    ~Bisection();
};

class FalsePosition : public Solver1D {
  public:
    FalsePosition();
    ~FalsePosition();
};

class Newton : public Solver1D {
  public:
    Newton();
    ~Newton();
};

class NewtonSafe : public Solver1D {
  public:
    NewtonSafe();
    ~NewtonSafe();
};

class Ridder : public Solver1D {
  public:
    Ridder();
    ~Ridder();
};

class Secant : public Solver1D {
  public:
    Secant();
    ~Secant();
};


#endif