File: distributions.py

package info (click to toggle)
quantlib-python 0.2.1.cvs20020322-1
  • links: PTS
  • area: main
  • in suites: woody
  • size: 2,040 kB
  • ctags: 3,245
  • sloc: cpp: 32,997; python: 7,156; makefile: 70
file content (144 lines) | stat: -rwxr-xr-x 4,911 bytes parent folder | download
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
#!/usr/bin/python

"""
 Copyright (C) 2000, 2001, 2002 RiskMap srl

 This file is part of QuantLib, a free-software/open-source library
 for financial quantitative analysts and developers - http://quantlib.org/

 QuantLib is free software: you can redistribute it and/or modify it under the
 terms of the QuantLib license.  You should have received a copy of the
 license along with this program; if not, please email ferdinando@ametrano.net
 The license is also available online at http://quantlib.org/html/license.html

 This program is distributed in the hope that it will be useful, but WITHOUT
 ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or FITNESS
 FOR A PARTICULAR PURPOSE.  See the license for more details.
"""

__version__ = "$Revision: 1.14 $"
# $Source: /cvsroot/quantlib/QuantLib-Python/QuantLib/test/distributions.py,v $

import QuantLib
import unittest
from math import exp, sqrt, pi

# define a Gaussian
def gaussian(x, average, sigma):
    normFact = sigma * sqrt( 2 * pi )
    dx = x-average
    return exp( -dx*dx/(2.0*sigma*sigma) ) / normFact

def gaussianDerivative(x, average, sigma):
    normFact = sigma * sigma * sigma * sqrt( 2 * pi )
    dx = x-average
    return - dx * exp( -dx*dx/(2.0*sigma*sigma) ) / normFact

# define the norm of a discretized function
def norm(f,h):
    # squared values
    f2 = map(lambda x: x*x, f)
    # numeric integral of f^2
    I = h*(reduce(lambda x,y: x+y, f2)-0.5*f2[0]-0.5*f2[-1])
    return sqrt(I)


class DistributionTest(unittest.TestCase):
    def runTest(self):
        "Testing distributions"
        average = 0.0
        sigma = 1.0
        normal = QuantLib.NormalDistribution(average, sigma)
        cum = QuantLib.CumulativeNormalDistribution(average, sigma)
        invCum = QuantLib.InvCumulativeNormalDistribution(average, sigma)

        xMin = average - 4*sigma
        xMax = average + 4*sigma
        # odd in include average
        N = 10001
        h = (xMax-xMin)/(N-1)

        x = [0]*N        # creates a list of N elements
        for i in range(N):
            x[i] = xMin+h*i

        y = map(lambda x,average=average,sigma=sigma:
            gaussian(x,average,sigma), x)

        yIntegrated = map(cum, x)
        yTemp = map(normal, x)
        y2Temp = map(cum.derivative, x)
        xTemp = map(invCum, yIntegrated)
        yd = map(normal.derivative, x)
        ydTemp = map(lambda x,average=average,sigma=sigma:
            gaussianDerivative(x,average,sigma), x)

        #check norm=gaussian
        e = norm(map(lambda x,y:x-y,yTemp,y),h)
        if not (e <= 1.0e-16):
            self.fail("""
norm of C++ NormalDistribution minus analytic gaussian: %(e)5.2e
tolerance exceeded
                      """ % locals())

        #check invCum(cum) = Identity
        e = norm(map(lambda x,y:x-y,xTemp,x),h)
        if not (e <= 1.0e-3):
            self.fail("""
norm of C++ invCum(cum(.)) minus identity: %(e)5.2e
tolerance exceeded
                      """ % locals())

        #check cum.derivative=normal
        e = norm(map(lambda x,y:x-y,y2Temp,y),h)
        if not (e <= 1.0e-16):
            self.fail("""
norm of C++ Cumulative.derivative minus analytic gaussian: %(e)5.2e
tolerance exceeded
                      """ % locals())

        #check normal.derivative=gaussianDerivative
        e = norm(map(lambda x,y:x-y,ydTemp,yd),h)
        if not (e <= 1.0e-16):
            self.fail("""
norm of C++ NormalDist.derivative minus analytic gaussian.derivative: %(e)5.2e
tolerance exceeded
                      """ % locals())

        # ... and now let's toy with finite difference
        # define the first derivative operators
        D = QuantLib.DZero(N,h)
        D2 = QuantLib.DPlusDMinus(N,h)
        # and calculate the derivatives
        y3Temp  = D.applyTo(yIntegrated)
        yd2Temp = D2.applyTo(yIntegrated)

        #check finite difference first order derivative operator = gaussian
        e = norm(map(lambda x,y:x-y,y3Temp,y),h)
        if not (e <= 1.0e-6):
            self.fail("""
norm of C++ FD 1st deriv. of cum minus analytic gaussian: %(e)5.2e
tolerance exceeded
                      """ % locals())

        # check finite difference second order derivative operator =
        # normal.derivative
        e = norm(map(lambda x,y:x-y,yd2Temp,yd),h)
        if not (e <= 1.0e-4):
            self.fail("""
norm of C++ FD 2nd deriv. of cum minus analytic gaussian.derivative: %(e)5.2e
tolerance exceeded
                      """ % locals())


if __name__ == '__main__':
    print 'testing QuantLib', QuantLib.__version__, QuantLib.QuantLibc.__file__, QuantLib.__file__
    import sys
    suite = unittest.TestSuite()
    suite.addTest(DistributionTest())
    if sys.hexversion >= 0x020100f0:
        unittest.TextTestRunner(verbosity=2).run(suite)
    else:
        unittest.TextTestRunner().run(suite)
    raw_input('press any key to continue')