1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214
|
#!/usr/bin/python
"""
Copyright (C) 2000, 2001, 2002 RiskMap srl
This file is part of QuantLib, a free-software/open-source library
for financial quantitative analysts and developers - http://quantlib.org/
QuantLib is free software: you can redistribute it and/or modify it under the
terms of the QuantLib license. You should have received a copy of the
license along with this program; if not, please email ferdinando@ametrano.net
The license is also available online at http://quantlib.org/html/license.html
This program is distributed in the hope that it will be useful, but WITHOUT
ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or FITNESS
FOR A PARTICULAR PURPOSE. See the license for more details.
"""
__version__ = "$Revision: 1.15 $"
# $Source: /cvsroot/quantlib/QuantLib-Python/QuantLib/test/risk_statistics.py,v $
import QuantLib
import unittest
from math import exp, sqrt, pi
# define a Gaussian
def gaussian(x, average, sigma):
normFact = sigma * sqrt( 2 * pi )
dx = x-average
return exp( -dx*dx/(2.0*sigma*sigma) ) / normFact
class RiskStatisticsTest(unittest.TestCase):
def runTest(self):
"Testing risk statistics"
s = QuantLib.RiskStatistics()
averageRange = [-100.0, 0.0, 100.0]
sigmaRange = [0.1, 1.0, 10]
N = 25000
numberOfSigma = 15
for average in averageRange:
for sigma in sigmaRange:
#target cannot be changed:
#it is a strong assumption to compute values to be checked
target = average
normal = QuantLib.NormalDistribution(average, sigma)
dataMin = average - numberOfSigma*sigma
dataMax = average + numberOfSigma*sigma
# even NOT to include average
h = (dataMax-dataMin)/(N-1)
data = [0]*N # creates a list of N elements
for i in range(N):
data[i] = dataMin+h*i
weights = map(lambda x,average=average,sigma=sigma:
gaussian(x,average,sigma), data)
s.addWeightedSequence(data, weights)
samples = s.samples()
if not (samples == N):
self.fail("""
wrong number of samples
calculated: %(samples)d
expected : %(N)d
""" % locals())
rightWeightSum = reduce(lambda x,y: x+y, weights)
weightSum = s.weightSum()
if not (weightSum == rightWeightSum):
self.fail("""
wrong sum of weights
calculated: %(weightSum)f
expected : %(rightWeightSum)f
""" % locals())
minDatum = s.min()
maxDatum = s.max()
if not (minDatum == dataMin):
self.fail("""
wrong minimum value
calculated: %(minDatum)f
expected : %(dataMin)f
""" % locals())
if not (abs(s.max()-dataMax) <= 1e-13):
self.fail("""
wrong maximum value
calculated: %(maxDatum)f
expected : %(dataMax)f
""" % locals())
mean = s.mean()
if average == 0.0:
check = abs(mean-average)
else:
check = abs(mean-average)/average
if not (check <= 1e-13):
self.fail("""
wrong mean value
calculated: %(mean)f
expected : %(average)f
""" % locals())
variance = s.variance()
sigma2 = sigma*sigma
if not (abs(variance-sigma2)/sigma2 <= 1e-4):
self.fail("""
wrong variance
calculated: %(variance)f
expected : %(sigma2)f
""" % locals())
stdDev = s.standardDeviation()
if not (abs(stdDev-sigma)/sigma <= 1e-4):
self.fail("""
wrong standard deviation
calculated: %(stdDev)f
expected : %(sigma)f
""" % locals())
skewness = s.skewness()
if not (abs(skewness) <= 1e-4):
self.fail("""
wrong skewness
calculated: %(skewness)f
expected : 0.0
""" % locals())
kurtosis = s.kurtosis()
if not (abs(kurtosis) <= 1e-1):
self.fail("""
wrong kurtosis
calculated: %(kurtosis)f
expected : 0.0
""" % locals())
rightPotentialUpside = max(average+2.0*sigma, 0.0)
potentialUpside = s.potentialUpside(0.9772)
if rightPotentialUpside == 0.0:
check = abs(potentialUpside-rightPotentialUpside)
else:
check = abs(potentialUpside-rightPotentialUpside)/\
rightPotentialUpside
if not (check <= 1e-3):
self.fail("""
wrong potential upside
calculated: %(potentialUpside)f
expected: %(rightPotentialUpside)f
""" % locals())
rightVAR = -min(average-2.0*sigma, 0.0)
VAR = s.valueAtRisk(0.9772)
if rightVAR == 0.0:
check = abs(VAR-rightVAR)
else:
check = abs(VAR-rightVAR)/rightVAR
if not (check <= 1e-3):
self.fail("""
wrong value at risk
calculated: %(VAR)f
expected: %(rightVAR)f
""" % locals())
tempVAR = average-2.0*sigma
rightExShortfall = average - sigma*sigma*gaussian(tempVAR,
average, sigma)/(1.0-0.9772)
rightExShortfall = -min(rightExShortfall, 0.0)
exShortfall = s.expectedShortfall(0.9772)
if rightExShortfall == 0.0:
check = abs(exShortfall)
else:
check = abs(exShortfall-rightExShortfall)/rightExShortfall
if not (check <= 1e-3):
self.fail("""
wrong expected shortfall
calculated: %(exShortFall)f
expected: %(rightExShortfall)f
""" % locals())
rightShortfall = 0.5
shortfall = s.shortfall(target)
if not (abs(shortfall-rightShortfall)/rightShortfall <= 1e-8):
self.fail("""
wrong shortfall
calculated: %(shortFall)
expected: %(rightShortfall)f
""" % locals())
rightAvgShortfall = sigma/sqrt( 2 * pi )
avgShortfall = s.averageShortfall(target)
check = abs(avgShortfall-rightAvgShortfall)/rightAvgShortfall
if not (check <= 1e-4):
self.fail("""
wrong average shortfall
calculated: %(avgShortFall)f
expected: %(rightAvgShortfall)f
""" % locals())
s.reset()
if __name__ == '__main__':
print 'testing QuantLib', QuantLib.__version__, QuantLib.QuantLibc.__file__, QuantLib.__file__
import sys
suite = unittest.TestSuite()
suite.addTest(RiskStatisticsTest())
if sys.hexversion >= 0x020100f0:
unittest.TextTestRunner(verbosity=2).run(suite)
else:
unittest.TextTestRunner().run(suite)
raw_input('press any key to continue')
|