File: statistics.py

package info (click to toggle)
quantlib-python 0.2.1.cvs20020322-1
  • links: PTS
  • area: main
  • in suites: woody
  • size: 2,040 kB
  • ctags: 3,245
  • sloc: cpp: 32,997; python: 7,156; makefile: 70
file content (137 lines) | stat: -rwxr-xr-x 4,210 bytes parent folder | download
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
#!/usr/bin/python

"""
 Copyright (C) 2000, 2001, 2002 RiskMap srl

 This file is part of QuantLib, a free-software/open-source library
 for financial quantitative analysts and developers - http://quantlib.org/

 QuantLib is free software: you can redistribute it and/or modify it under the
 terms of the QuantLib license.  You should have received a copy of the
 license along with this program; if not, please email ferdinando@ametrano.net
 The license is also available online at http://quantlib.org/html/license.html

 This program is distributed in the hope that it will be useful, but WITHOUT
 ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or FITNESS
 FOR A PARTICULAR PURPOSE.  See the license for more details.
"""

__version__ = "$Revision: 1.12 $"
# $Source: /cvsroot/quantlib/QuantLib-Python/QuantLib/test/statistics.py,v $

import QuantLib
import unittest

class StatisticsTest(unittest.TestCase):
    def runTest(self):
        "Testing statistics"
        tol = 1e-9

        data =    [  3,   4,   5,   2,   3,   4,   5,   6,   4,   7]
        weights = [1.0, 1.0, 1.0, 1.0, 1.0, 1.0, 1.0, 1.0, 1.0, 1.0]

        s = QuantLib.Statistics()
        s.addWeightedSequence(data, weights)

        samples = s.samples()
        N = len(data)
        if not (samples == N):
            self.fail("""
wrong number of samples
    calculated: %(samples)d
    expected  : %(N)d
                      """ % locals())

        weightSum = s.weightSum()
        rightWeightSum = reduce(lambda x,y:x+y, weights)
        if not (weightSum == rightWeightSum):
            self.fail("""
wrong sum of weights\n' + \
    calculated: %(weightSum)f
    expected  : %(rightWeightSum)f
                      """ % locals())

        minDatum = s.min()
        maxDatum = s.max()
        rightMin = min(data)
        rightMax = max(data)
        if not (minDatum == rightMin):
            self.fail("""
wrong minimum value
    calculated: %(minDatum)f
    expected  : %(rightMin)f
                      """ % locals())

        if not (maxDatum == rightMax):
            self.fail("""
wrong maximum value
    calculated: %(maxDatum)f
    expected  : %(rightMax)f
                      """ % locals())

        mean = s.mean()
        rightMean = reduce(lambda x,y:x+y, map(lambda x,y:x*y, data, weights)) \
            / reduce(lambda x,y:x+y, weights)
        if not (abs(mean-rightMean) <= tol):
            self.fail("""
wrong mean value\n' + \
    calculated: %(mean)f
    expected  : %(rightMean)f
                      """ % locals())

        variance = s.variance()
        if not (abs(variance-2.23333333333) <= tol):
            self.fail("""
wrong variance
    calculated: %(variance)f
    expected  : 2.23333333333
                      """ % locals())

        stdDev = s.standardDeviation()
        if not (abs(stdDev-1.4944341181) <= tol):
            self.fail("""
wrong standard deviation
    calculated: %(stdDev)f
    expected  : 1.4944341181
                      """ % locals())

        skewness = s.skewness()
        if not (abs(skewness-0.359543071407) <= tol):
            self.fail("""
wrong skewness
    calculated: %(skewness)f
    expected  : 0.359543071407
                      """ % locals())

        kurtosis = s.kurtosis()
        if not (abs(kurtosis+0.151799637209) <= tol):
            self.fail("""
wrong kurtosis
    calculated: %(kurtosis)f
    expected  : -0.151799637209
                      """ % locals())

        s.reset()

        data = map(lambda x: x-3,data)
        s.addWeightedSequence(data, weights)
        downDev = s.downsideDeviation()
        if not (abs(downDev-0.333333333) <= tol):
            self.fail("""
wrong down side deviation
    calculated: %(downDev)f
    expected  : 0.333333333
                      """ % locals())


if __name__ == '__main__':
    print 'testing QuantLib', QuantLib.__version__, QuantLib.QuantLibc.__file__, QuantLib.__file__
    import sys
    suite = unittest.TestSuite()
    suite.addTest(StatisticsTest())
    if sys.hexversion >= 0x020100f0:
        unittest.TextTestRunner(verbosity=2).run(suite)
    else:
        unittest.TextTestRunner().run(suite)
    raw_input('press any key to continue')