File: group__lattices.html

package info (click to toggle)
quantlib-refman-html 0.9.0-1
  • links: PTS
  • area: main
  • in suites: lenny
  • size: 60,592 kB
  • ctags: 7,595
  • sloc: makefile: 30
file content (159 lines) | stat: -rw-r--r-- 14,206 bytes parent folder | download
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
<!DOCTYPE HTML PUBLIC "-//W3C//DTD HTML 4.01 Transitional//EN">
<html>
<head>
<meta http-equiv="Content-Type" content="text/html;charset=UTF-8">
<meta name="robots" content="none">
<title>QuantLib: Lattice methods</title>
<link rel="stylesheet" href="quantlib.css" type="text/css">
<link rel="stylesheet" href="print.css" type="text/css" media="print">
<link rel="shortcut icon" href="favicon.ico" type="image/x-icon">
<link rel="icon" href="favicon.ico" type="image/x-icon">
</head>
<body>

<div id="container">
<div id="header">
<img class="titleimage"
 src="QL-title.jpg" width="212" height="47" border="0"
 alt="QuantLib">
<br>
<h3 class="subtitle">A free/open-source library for quantitative finance</h3>
</div>
<div id="menu">

<h3 class="navbartitle">Version 0.9.0</h3>

<hr>

<h3 class="navbartitle">Getting started</h3>
<ul class="navbarlist">
<li class="navlink"><a href="index.html">Introduction</a></li>
<li class="navlink"><a href="overview.html">Project overview</a></li>
<li class="navlink"><a href="where.html">Where to get QuantLib</a></li>
<li class="navlink"><a href="install.html">Installation</a></li>
<li class="navlink"><a href="config.html">Configuration</a></li>
<li class="navlink"><a href="usage.html">Usage</a></li>
<li class="navlink"><a href="history.html">Version history</a></li>
<li class="navlink"><a href="resources.html">Additional resources</a></li>
<li class="navlink"><a href="group.html">The QuantLib group</a></li>
<li class="navlink"><a href="license.html">Copyright and license</a></li>
</ul>

<hr>

<h3 class="navbartitle">Reference manual</h3>
<ul class="navbarlist">
<li class="navlink"><a href="modules.html">Modules</a></li>
<li class="navlink"><a href="hierarchy.html">Class Hierarchy</a></li>
<li class="navlink"><a href="annotated.html">Compound List</a></li>
<li class="navlink"><a href="files.html">File List</a></li>
<li class="navlink"><a href="functions.html">Compound Members</a></li>
<li class="navlink"><a href="globals.html">File Members</a></li>
<li class="navlink"><a href="bug.html">Known Bugs</a></li>
<li class="navlink"><a href="caveats.html">Caveats</a></li>
<li class="navlink"><a href="test.html">Test Suite</a></li>
<li class="navlink"><a href="examples.html">Examples</a></li>
</ul>
</div>

<div id="content">
<!--Doxygen-generated content-->

<!-- Generated by Doxygen 1.5.4 -->
<h1>Lattice methods</h1><hr><a name="_details"></a><h2>Detailed Description</h2>
The framework (corresponding to the ql/Lattices directory) contains basic building blocks for pricing instruments using lattice methods (trees). A lattice, i.e. an instance of the abstract class <a class="el" href="class_quant_lib_1_1_lattice.html" title="Lattice (tree, finite-differences) base class">QuantLib::Lattice</a>, relies on one or several trees (each one approximating a diffusion process) to price an instance of the DiscretizedAsset class. Trees are instances of classes derived from <a class="el" href="class_quant_lib_1_1_tree.html" title="Tree approximating a single-factor diffusion">QuantLib::Tree</a>, classes which define the branching between nodes and transition probabilities.<h2><a class="anchor" name="binomial">
Binomial trees</a></h2>
The binomial method is the simplest numerical method that can be used to price path-independent derivatives. It is usually the preferred lattice method under the Black-Scholes-Merton model. As an example, let's see the framework implemented in the <a class="el" href="bsmlattice_8hpp.html" title="Binomial trees under the BSM model.">bsmlattice.hpp</a> file. It is a method based on a binomial tree, with constant short-rate (discounting). There are several approaches to build the underlying binomial tree, like Jarrow-Rudd or Cox-Ross-Rubinstein.<h2><a class="anchor" name="trinomial">
Trinomial trees</a></h2>
When the underlying stochastic process has a mean-reverting pattern, it is usually better to use a trinomial tree instead of a binomial tree. An example is implemented in the <a class="el" href="class_quant_lib_1_1_trinomial_tree.html" title="Recombining trinomial tree class.">QuantLib::TrinomialTree</a> class, which is constructed using a diffusion process and a time-grid. The goal is to build a recombining trinomial tree that will discretize, at a finite set of times, the possible evolutions of a random variable <img class="formulaInl" alt="$ y $" src="form_13.png"> satisfying <p class="formulaDsp">
<img class="formulaDsp" alt="\[ dy_t = \mu(t, y_t) dt + \sigma(t, y_t) dW_t. \]" src="form_14.png">
<p>
 At each node, there is a probability <img class="formulaInl" alt="$ p_u, p_m $" src="form_15.png"> and <img class="formulaInl" alt="$ p_d $" src="form_16.png"> to go through respectively the upper, the middle and the lower branch. These probabilities must satisfy <p class="formulaDsp">
<img class="formulaDsp" alt="\[ p_{u}y_{i+1,k+1}+p_{m}y_{i+1,k}+p_{d}y_{i+1,k-1}=E_{i,j} \]" src="form_17.png">
<p>
 and <p class="formulaDsp">
<img class="formulaDsp" alt="\[ p_u y_{i+1,k+1}^2 + p_m y_{i+1,k}^2 + p_d y_{i+1,k-1}^2 = V^2_{i,j}+E_{i,j}^2, \]" src="form_18.png">
<p>
 where k (the index of the node at the end of the middle branch) is the index of the node which is the nearest to the expected future value, <img class="formulaInl" alt="$ E_{i,j}=\mathbf{E}\left( y(t_{i+1})|y(t_{i})=y_{i,j}\right) $" src="form_19.png"> and <img class="formulaInl" alt="$ V_{i,j}^{2}=\mathbf{Var}\{y(t_{i+1})|y(t_{i})=y_{i,j}\} $" src="form_20.png">. If we suppose that the variance is only dependant on time <img class="formulaInl" alt="$ V_{i,j}=V_{i} $" src="form_21.png"> and set <img class="formulaInl" alt="$ y_{i+1} $" src="form_22.png"> to <img class="formulaInl" alt="$ V_{i}\sqrt{3} $" src="form_23.png">, we find that <p class="formulaDsp">
<img class="formulaDsp" alt="\[ p_{u} = \frac{1}{6}+\frac{(E_{i,j}-y_{i+1,k})^{2}}{6V_{i}^{2}} + \frac{E_{i,j}-y_{i+1,k}}{2\sqrt{3}V_{i}}, \]" src="form_24.png">
<p>
 <p class="formulaDsp">
<img class="formulaDsp" alt="\[ p_{m} = \frac{2}{3}-\frac{(E_{i,j}-y_{i+1,k})^{2}}{3V_{i}^{2}}, \]" src="form_25.png">
<p>
 <p class="formulaDsp">
<img class="formulaDsp" alt="\[ p_{d} = \frac{1}{6}+\frac{(E_{i,j}-y_{i+1,k})^{2}}{6V_{i}^{2}} - \frac{E_{i,j}-y_{i+1,k}}{2\sqrt{3}V_{i}}. \]" src="form_26.png">
<p>
<h2><a class="anchor" name="bidimensional">
Bidimensional lattices</a></h2>
To come...<h2><a class="anchor" name="discretizedasset">
The QuantLib::DiscretizedAsset class</a></h2>
This class is a representation of the price of a derivative at a specific time. It is roughly an array of values, each value being associated to a state of the underlying stochastic variables. For the moment, it is only used when working with trees, but it should be quite easy to make a use of it in finite-differences methods. The two main points, when deriving classes from <a class="el" href="class_quant_lib_1_1_discretized_asset.html" title="Discretized asset class used by numerical methods.">QuantLib::DiscretizedAsset</a>, are:<ol type=1>
<li>Define the initialisation procedure (e.g. terminal payoff for european stock options).</li><li>Define the method adjusting values, when necessary, at each time steps (e.g. apply the step condition for american or bermudan options). Some examples are found in QuantLib::DiscretizedSwap and QuantLib::DiscretizedSwaption. </li></ol>

<p>
<table border="0" cellpadding="0" cellspacing="0">
<tr><td></td></tr>
<tr><td colspan="2"><br><h2>Classes</h2></td></tr>
<tr><td class="memItemLeft" nowrap align="right" valign="top">class &nbsp;</td><td class="memItemRight" valign="bottom"><a class="el" href="class_quant_lib_1_1_binomial_tree.html">BinomialTree</a></td></tr>

<tr><td class="mdescLeft">&nbsp;</td><td class="mdescRight">Binomial tree base class.  <a href="class_quant_lib_1_1_binomial_tree.html#_details">More...</a><br></td></tr>
<tr><td class="memItemLeft" nowrap align="right" valign="top">class &nbsp;</td><td class="memItemRight" valign="bottom"><a class="el" href="class_quant_lib_1_1_equal_probabilities_binomial_tree.html">EqualProbabilitiesBinomialTree</a></td></tr>

<tr><td class="mdescLeft">&nbsp;</td><td class="mdescRight">Base class for equal probabilities binomial tree.  <a href="class_quant_lib_1_1_equal_probabilities_binomial_tree.html#_details">More...</a><br></td></tr>
<tr><td class="memItemLeft" nowrap align="right" valign="top">class &nbsp;</td><td class="memItemRight" valign="bottom"><a class="el" href="class_quant_lib_1_1_equal_jumps_binomial_tree.html">EqualJumpsBinomialTree</a></td></tr>

<tr><td class="mdescLeft">&nbsp;</td><td class="mdescRight">Base class for equal jumps binomial tree.  <a href="class_quant_lib_1_1_equal_jumps_binomial_tree.html#_details">More...</a><br></td></tr>
<tr><td class="memItemLeft" nowrap align="right" valign="top">class &nbsp;</td><td class="memItemRight" valign="bottom"><a class="el" href="class_quant_lib_1_1_jarrow_rudd.html">JarrowRudd</a></td></tr>

<tr><td class="mdescLeft">&nbsp;</td><td class="mdescRight">Jarrow-Rudd (multiplicative) equal probabilities binomial tree.  <a href="class_quant_lib_1_1_jarrow_rudd.html#_details">More...</a><br></td></tr>
<tr><td class="memItemLeft" nowrap align="right" valign="top">class &nbsp;</td><td class="memItemRight" valign="bottom"><a class="el" href="class_quant_lib_1_1_cox_ross_rubinstein.html">CoxRossRubinstein</a></td></tr>

<tr><td class="mdescLeft">&nbsp;</td><td class="mdescRight">Cox-Ross-Rubinstein (multiplicative) equal jumps binomial tree.  <a href="class_quant_lib_1_1_cox_ross_rubinstein.html#_details">More...</a><br></td></tr>
<tr><td class="memItemLeft" nowrap align="right" valign="top">class &nbsp;</td><td class="memItemRight" valign="bottom"><a class="el" href="class_quant_lib_1_1_additive_e_q_p_binomial_tree.html">AdditiveEQPBinomialTree</a></td></tr>

<tr><td class="mdescLeft">&nbsp;</td><td class="mdescRight">Additive equal probabilities binomial tree.  <a href="class_quant_lib_1_1_additive_e_q_p_binomial_tree.html#_details">More...</a><br></td></tr>
<tr><td class="memItemLeft" nowrap align="right" valign="top">class &nbsp;</td><td class="memItemRight" valign="bottom"><a class="el" href="class_quant_lib_1_1_trigeorgis.html">Trigeorgis</a></td></tr>

<tr><td class="mdescLeft">&nbsp;</td><td class="mdescRight">Trigeorgis (additive equal jumps) binomial tree  <a href="class_quant_lib_1_1_trigeorgis.html#_details">More...</a><br></td></tr>
<tr><td class="memItemLeft" nowrap align="right" valign="top">class &nbsp;</td><td class="memItemRight" valign="bottom"><a class="el" href="class_quant_lib_1_1_tian.html">Tian</a></td></tr>

<tr><td class="mdescLeft">&nbsp;</td><td class="mdescRight">Tian tree: third moment matching, multiplicative approach  <a href="class_quant_lib_1_1_tian.html#_details">More...</a><br></td></tr>
<tr><td class="memItemLeft" nowrap align="right" valign="top">class &nbsp;</td><td class="memItemRight" valign="bottom"><a class="el" href="class_quant_lib_1_1_leisen_reimer.html">LeisenReimer</a></td></tr>

<tr><td class="mdescLeft">&nbsp;</td><td class="mdescRight">Leisen &amp; Reimer tree: multiplicative approach.  <a href="class_quant_lib_1_1_leisen_reimer.html#_details">More...</a><br></td></tr>
<tr><td class="memItemLeft" nowrap align="right" valign="top">class &nbsp;</td><td class="memItemRight" valign="bottom"><a class="el" href="class_quant_lib_1_1_black_scholes_lattice.html">BlackScholesLattice</a></td></tr>

<tr><td class="mdescLeft">&nbsp;</td><td class="mdescRight">Simple binomial lattice approximating the Black-Scholes model.  <a href="class_quant_lib_1_1_black_scholes_lattice.html#_details">More...</a><br></td></tr>
<tr><td class="memItemLeft" nowrap align="right" valign="top">class &nbsp;</td><td class="memItemRight" valign="bottom"><a class="el" href="class_quant_lib_1_1_tree_lattice.html">TreeLattice</a></td></tr>

<tr><td class="mdescLeft">&nbsp;</td><td class="mdescRight">Tree-based lattice-method base class.  <a href="class_quant_lib_1_1_tree_lattice.html#_details">More...</a><br></td></tr>
<tr><td class="memItemLeft" nowrap align="right" valign="top">class &nbsp;</td><td class="memItemRight" valign="bottom"><a class="el" href="class_quant_lib_1_1_tree_lattice1_d.html">TreeLattice1D</a></td></tr>

<tr><td class="mdescLeft">&nbsp;</td><td class="mdescRight">One-dimensional tree-based lattice.  <a href="class_quant_lib_1_1_tree_lattice1_d.html#_details">More...</a><br></td></tr>
<tr><td class="memItemLeft" nowrap align="right" valign="top">class &nbsp;</td><td class="memItemRight" valign="bottom"><a class="el" href="class_quant_lib_1_1_tree_lattice2_d.html">TreeLattice2D</a></td></tr>

<tr><td class="mdescLeft">&nbsp;</td><td class="mdescRight">Two-dimensional tree-based lattice.  <a href="class_quant_lib_1_1_tree_lattice2_d.html#_details">More...</a><br></td></tr>
<tr><td class="memItemLeft" nowrap align="right" valign="top">class &nbsp;</td><td class="memItemRight" valign="bottom"><a class="el" href="class_quant_lib_1_1_tsiveriotis_fernandes_lattice.html">TsiveriotisFernandesLattice</a></td></tr>

<tr><td class="mdescLeft">&nbsp;</td><td class="mdescRight">Binomial lattice approximating the Tsiveriotis-Fernandes model.  <a href="class_quant_lib_1_1_tsiveriotis_fernandes_lattice.html#_details">More...</a><br></td></tr>
<tr><td class="memItemLeft" nowrap align="right" valign="top">class &nbsp;</td><td class="memItemRight" valign="bottom"><a class="el" href="class_quant_lib_1_1_tree.html">Tree</a></td></tr>

<tr><td class="mdescLeft">&nbsp;</td><td class="mdescRight">Tree approximating a single-factor diffusion  <a href="class_quant_lib_1_1_tree.html#_details">More...</a><br></td></tr>
<tr><td class="memItemLeft" nowrap align="right" valign="top">class &nbsp;</td><td class="memItemRight" valign="bottom"><a class="el" href="class_quant_lib_1_1_trinomial_tree.html">TrinomialTree</a></td></tr>

<tr><td class="mdescLeft">&nbsp;</td><td class="mdescRight">Recombining trinomial tree class.  <a href="class_quant_lib_1_1_trinomial_tree.html#_details">More...</a><br></td></tr>
</table>

</div>

<div class="footer">
<div class="endmatter">
Documentation generated by
<a href="http://www.doxygen.org">Doxygen</a> 1.5.4
</div>
</div>

</div>

</body>
</html>