1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301
|
<!DOCTYPE HTML PUBLIC "-//W3C//DTD HTML 4.01 Transitional//EN">
<html>
<head>
<meta http-equiv="Content-Type" content="text/html;charset=UTF-8">
<meta name="robots" content="none">
<title>CubicInterpolation Class Reference</title>
<link rel="stylesheet" href="quantlib.css" type="text/css">
<link rel="stylesheet" href="print.css" type="text/css" media="print">
<link rel="shortcut icon" href="favicon.ico" type="image/x-icon">
<link rel="icon" href="favicon.ico" type="image/x-icon">
</head>
<body>
<div id="container">
<div id="header">
<img class="titleimage"
src="QL-title.jpg" width="185" height="50" border="0"
alt="QuantLib">
<br>
<h3 class="subtitle">A free/open-source library for quantitative finance</h3>
</div>
<div id="menu">
<h3 class="navbartitle">Version 1.2</h3>
<hr>
<h3 class="navbartitle">Getting started</h3>
<ul class="navbarlist">
<li class="navlink"><a href="index.html">Introduction</a></li>
<li class="navlink"><a href="where.html">Where to get QuantLib</a></li>
<li class="navlink"><a href="install.html">Installation</a></li>
<li class="navlink"><a href="config.html">Configuration</a></li>
<li class="navlink"><a href="usage.html">Usage</a></li>
<li class="navlink"><a href="history.html">Version history</a></li>
<li class="navlink"><a href="resources.html">Additional resources</a></li>
<li class="navlink"><a href="group.html">The QuantLib group</a></li>
<li class="navlink"><a href="license.html">Copyright and license</a></li>
</ul>
<hr>
<h3 class="navbartitle">Reference manual</h3>
<ul class="navbarlist">
<li class="navlink"><a href="modules.html">Modules</a></li>
<li class="navlink"><a href="hierarchy.html">Class Hierarchy</a></li>
<li class="navlink"><a href="annotated.html">Compound List</a></li>
<li class="navlink"><a href="files.html">File List</a></li>
<li class="navlink"><a href="functions.html">Compound Members</a></li>
<li class="navlink"><a href="globals.html">File Members</a></li>
<li class="navlink"><a href="todo.html">Todo List</a></li>
<li class="navlink"><a href="bug.html">Known Bugs</a></li>
<li class="navlink"><a href="caveats.html">Caveats</a></li>
<li class="navlink"><a href="test.html">Test Suite</a></li>
<li class="navlink"><a href="examples.html">Examples</a></li>
</ul>
</div>
<div id="content">
<!--Doxygen-generated content-->
<!-- Generated by Doxygen 1.7.6.1 -->
<div id="nav-path" class="navpath">
<ul>
<li class="navelem"><b>QuantLib</b> </li>
<li class="navelem"><a class="el" href="class_quant_lib_1_1_cubic_interpolation.html">CubicInterpolation</a> </li>
</ul>
</div>
</div>
<div class="header">
<div class="summary">
<a href="#pub-types">Public Types</a> |
<a href="#pub-methods">Public Member Functions</a> </div>
<div class="headertitle">
<div class="title">CubicInterpolation Class Reference</div> </div>
</div><!--header-->
<div class="contents">
<!-- doxytag: class="QuantLib::CubicInterpolation" --><!-- doxytag: inherits="QuantLib::Interpolation" -->
<p>Cubic interpolation between discrete points.
<a href="class_quant_lib_1_1_cubic_interpolation.html#details">More...</a></p>
<p><code>#include <ql/math/interpolations/cubicinterpolation.hpp></code></p>
<div class="dynheader">
Inheritance diagram for CubicInterpolation:</div>
<div class="dyncontent">
<div class="center"><img src="class_quant_lib_1_1_cubic_interpolation__inherit__graph.png" border="0" usemap="#_cubic_interpolation_inherit__map" alt="Inheritance graph"/></div>
<map name="_cubic_interpolation_inherit__map" id="_cubic_interpolation_inherit__map">
<area shape="rect" id="node2" href="class_quant_lib_1_1_interpolation.html" title="base class for 1-D interpolations." alt="" coords="21,6,115,37"/></map>
<center><span class="legend">[<a href="graph_legend.html">legend</a>]</span></center></div>
<p><a href="class_quant_lib_1_1_cubic_interpolation-members.html">List of all members.</a></p>
<table class="memberdecls">
<tr><td colspan="2"><h2><a name="pub-types"></a>
Public Types</h2></td></tr>
<tr><td class="memItemLeft" align="right" valign="top">enum  </td><td class="memItemRight" valign="bottom"><a class="el" href="class_quant_lib_1_1_cubic_interpolation.html#aeccb633d9226f37b800589483ea2f0f6">DerivativeApprox</a> { <br/>
  <a class="el" href="class_quant_lib_1_1_cubic_interpolation.html#aeccb633d9226f37b800589483ea2f0f6a73a1396ca8adb89d7ff481ff55974c1e">Spline</a>,
<a class="el" href="class_quant_lib_1_1_cubic_interpolation.html#aeccb633d9226f37b800589483ea2f0f6aace9569c3a723c414afe7e6332958312">SplineOM1</a>,
<a class="el" href="class_quant_lib_1_1_cubic_interpolation.html#aeccb633d9226f37b800589483ea2f0f6a5230bf2465bab97aecd7087ee1a8ce1e">SplineOM2</a>,
<a class="el" href="class_quant_lib_1_1_cubic_interpolation.html#aeccb633d9226f37b800589483ea2f0f6a8908df67d5fb494d1799a270564789f8">FourthOrder</a>,
<br/>
  <a class="el" href="class_quant_lib_1_1_cubic_interpolation.html#aeccb633d9226f37b800589483ea2f0f6a6c56130d695e3aea964232dacfa2c298">Parabolic</a>,
<a class="el" href="class_quant_lib_1_1_cubic_interpolation.html#aeccb633d9226f37b800589483ea2f0f6ac194b4cb0838c7c484b13eb6d6dc0010">FritschButland</a>,
<a class="el" href="class_quant_lib_1_1_cubic_interpolation.html#aeccb633d9226f37b800589483ea2f0f6ab1ddc152184a0f96b8f6e9be8168e708">Akima</a>,
<a class="el" href="class_quant_lib_1_1_cubic_interpolation.html#aeccb633d9226f37b800589483ea2f0f6a065fa14c1b83af108fdae0c713695951">Kruger</a>
<br/>
}</td></tr>
<tr><td class="memItemLeft" align="right" valign="top">enum  </td><td class="memItemRight" valign="bottom"><a class="el" href="class_quant_lib_1_1_cubic_interpolation.html#af3393571fa8a8daa4ee5c06613b26555">BoundaryCondition</a> { <br/>
  <a class="el" href="class_quant_lib_1_1_cubic_interpolation.html#af3393571fa8a8daa4ee5c06613b26555a7922e3c8bf97083083c9261300dcfedf">NotAKnot</a>,
<a class="el" href="class_quant_lib_1_1_cubic_interpolation.html#af3393571fa8a8daa4ee5c06613b26555aaf8392865aea8f24355012391183d9e9">FirstDerivative</a>,
<a class="el" href="class_quant_lib_1_1_cubic_interpolation.html#af3393571fa8a8daa4ee5c06613b26555a23de8c854eb282410ba10963837c94b5">SecondDerivative</a>,
<a class="el" href="class_quant_lib_1_1_cubic_interpolation.html#af3393571fa8a8daa4ee5c06613b26555a6db09e3bc054df6f996a45de2ccfeacd">Periodic</a>,
<br/>
  <a class="el" href="class_quant_lib_1_1_cubic_interpolation.html#af3393571fa8a8daa4ee5c06613b26555a1e1c27164b52b5cdf7df7f110dbb0fd3">Lagrange</a>
<br/>
}</td></tr>
<tr><td colspan="2"><h2><a name="pub-methods"></a>
Public Member Functions</h2></td></tr>
<tr><td class="memTemplParams" colspan="2">template<class I1 , class I2 > </td></tr>
<tr><td class="memTemplItemLeft" align="right" valign="top"> </td><td class="memTemplItemRight" valign="bottom"><a class="el" href="class_quant_lib_1_1_cubic_interpolation.html#a4660490e94d17a41507f676a5eb41a15">CubicInterpolation</a> (const I1 &xBegin, const I1 &xEnd, const I2 &yBegin, <a class="el" href="class_quant_lib_1_1_cubic_interpolation.html#aeccb633d9226f37b800589483ea2f0f6">CubicInterpolation::DerivativeApprox</a> da, bool monotonic, <a class="el" href="class_quant_lib_1_1_cubic_interpolation.html#af3393571fa8a8daa4ee5c06613b26555">CubicInterpolation::BoundaryCondition</a> leftCond, <a class="el" href="group__types.html#ga4bdf4bfe76b9ffa6fa64c47d8bfa0c78">Real</a> leftConditionValue, <a class="el" href="class_quant_lib_1_1_cubic_interpolation.html#af3393571fa8a8daa4ee5c06613b26555">CubicInterpolation::BoundaryCondition</a> rightCond, <a class="el" href="group__types.html#ga4bdf4bfe76b9ffa6fa64c47d8bfa0c78">Real</a> rightConditionValue)</td></tr>
<tr><td class="memItemLeft" align="right" valign="top"><a class="anchor" id="a294c76c9e77213bbb3da550152033826"></a><!-- doxytag: member="QuantLib::CubicInterpolation::primitiveConstants" ref="a294c76c9e77213bbb3da550152033826" args="() const " -->
const std::vector< <a class="el" href="group__types.html#ga4bdf4bfe76b9ffa6fa64c47d8bfa0c78">Real</a> > & </td><td class="memItemRight" valign="bottom"><b>primitiveConstants</b> () const </td></tr>
<tr><td class="memItemLeft" align="right" valign="top"><a class="anchor" id="a4119d6ba4d3f11be628a129a7a2bfe6f"></a><!-- doxytag: member="QuantLib::CubicInterpolation::aCoefficients" ref="a4119d6ba4d3f11be628a129a7a2bfe6f" args="() const " -->
const std::vector< <a class="el" href="group__types.html#ga4bdf4bfe76b9ffa6fa64c47d8bfa0c78">Real</a> > & </td><td class="memItemRight" valign="bottom"><b>aCoefficients</b> () const </td></tr>
<tr><td class="memItemLeft" align="right" valign="top"><a class="anchor" id="aaca6dd10570ae2dbc6e5ea6ab8a7e9bb"></a><!-- doxytag: member="QuantLib::CubicInterpolation::bCoefficients" ref="aaca6dd10570ae2dbc6e5ea6ab8a7e9bb" args="() const " -->
const std::vector< <a class="el" href="group__types.html#ga4bdf4bfe76b9ffa6fa64c47d8bfa0c78">Real</a> > & </td><td class="memItemRight" valign="bottom"><b>bCoefficients</b> () const </td></tr>
<tr><td class="memItemLeft" align="right" valign="top"><a class="anchor" id="a7746999062e0736bd067da1e60548069"></a><!-- doxytag: member="QuantLib::CubicInterpolation::cCoefficients" ref="a7746999062e0736bd067da1e60548069" args="() const " -->
const std::vector< <a class="el" href="group__types.html#ga4bdf4bfe76b9ffa6fa64c47d8bfa0c78">Real</a> > & </td><td class="memItemRight" valign="bottom"><b>cCoefficients</b> () const </td></tr>
<tr><td class="memItemLeft" align="right" valign="top"><a class="anchor" id="a7f8698aec8c4a956e68c3a9d6b19f23a"></a><!-- doxytag: member="QuantLib::CubicInterpolation::monotonicityAdjustments" ref="a7f8698aec8c4a956e68c3a9d6b19f23a" args="() const " -->
const std::vector< bool > & </td><td class="memItemRight" valign="bottom"><b>monotonicityAdjustments</b> () const </td></tr>
</table>
<hr/><a name="details" id="details"></a><h2>Detailed Description</h2>
<div class="textblock"><p>Cubic interpolation between discrete points. </p>
<p><a class="el" href="class_quant_lib_1_1_cubic.html" title="Cubic interpolation factory and traits">Cubic</a> interpolation is fully defined when the ${f_i}$ function values at points ${x_i}$ are supplemented with ${f^'_i}$ function derivative values.</p>
<p>Different type of first derivative approximations are implemented, both local and non-local. Local schemes (Fourth-order, Parabolic, Modified Parabolic, Fritsch-Butland, Akima, Kruger) use only $f$ values near $x_i$ to calculate each $f^'_i$. Non-local schemes (Spline with different boundary conditions) use all ${f_i}$ values and obtain ${f^'_i}$ by solving a linear system of equations. Local schemes produce $C^1$ interpolants, while the spline schemes generate $C^2$ interpolants.</p>
<p>Hyman's monotonicity constraint filter is also implemented: it can be applied to all schemes to ensure that in the regions of local monotoniticity of the input (three successive increasing or decreasing values) the interpolating cubic remains monotonic. If the interpolating cubic is already monotonic, the Hyman filter leaves it unchanged preserving all its original features.</p>
<p>In the case of $C^2$ interpolants the Hyman filter ensures local monotonicity at the expense of the second derivative of the interpolant which will no longer be continuous in the points where the filter has been applied.</p>
<p>While some non-linear schemes (Modified Parabolic, Fritsch-Butland, Kruger) are guaranteed to be locally monotonic in their original approximation, all other schemes must be filtered according to the Hyman criteria at the expense of their linearity.</p>
<p>See R. L. Dougherty, A. Edelman, and J. M. Hyman, "Nonnegativity-, Monotonicity-, or Convexity-Preserving CubicSpline and
Quintic Hermite Interpolation" Mathematics Of Computation, v. 52, n. 186, April 1989, pp. 471-494.</p>
<dl class="todo"><dt><b><a class="el" href="todo.html#_todo000033">Possible enhancements:</a></b></dt><dd>implement missing schemes (FourthOrder and ModifiedParabolic) and missing boundary conditions (Periodic and Lagrange).</dd></dl>
<dl class="test"><dt><b><a class="el" href="test.html#_test000042">Tests:</a></b></dt><dd>to be adapted from old ones.</dd></dl>
</div><hr/><h2>Member Enumeration Documentation</h2>
<a class="anchor" id="aeccb633d9226f37b800589483ea2f0f6"></a><!-- doxytag: member="QuantLib::CubicInterpolation::DerivativeApprox" ref="aeccb633d9226f37b800589483ea2f0f6" args="" -->
<div class="memitem">
<div class="memproto">
<table class="memname">
<tr>
<td class="memname">enum <a class="el" href="class_quant_lib_1_1_cubic_interpolation.html#aeccb633d9226f37b800589483ea2f0f6">DerivativeApprox</a></td>
</tr>
</table>
</div>
<div class="memdoc">
<dl><dt><b>Enumerator: </b></dt><dd><table border="0" cellspacing="2" cellpadding="0">
<tr><td valign="top"><em><a class="anchor" id="aeccb633d9226f37b800589483ea2f0f6a73a1396ca8adb89d7ff481ff55974c1e"></a><!-- doxytag: member="Spline" ref="aeccb633d9226f37b800589483ea2f0f6a73a1396ca8adb89d7ff481ff55974c1e" args="" -->Spline</em> </td><td>
<p>Spline approximation (non-local, non-monotonic, linear[?]). Different boundary conditions can be used on the left and right boundaries: see <a class="el" href="class_quant_lib_1_1_boundary_condition.html" title="Abstract boundary condition class for finite difference problems.">BoundaryCondition</a>. </p>
</td></tr>
<tr><td valign="top"><em><a class="anchor" id="aeccb633d9226f37b800589483ea2f0f6aace9569c3a723c414afe7e6332958312"></a><!-- doxytag: member="SplineOM1" ref="aeccb633d9226f37b800589483ea2f0f6aace9569c3a723c414afe7e6332958312" args="" -->SplineOM1</em> </td><td>
<p>Overshooting minimization 1st derivative. </p>
</td></tr>
<tr><td valign="top"><em><a class="anchor" id="aeccb633d9226f37b800589483ea2f0f6a5230bf2465bab97aecd7087ee1a8ce1e"></a><!-- doxytag: member="SplineOM2" ref="aeccb633d9226f37b800589483ea2f0f6a5230bf2465bab97aecd7087ee1a8ce1e" args="" -->SplineOM2</em> </td><td>
<p>Overshooting minimization 2nd derivative. </p>
</td></tr>
<tr><td valign="top"><em><a class="anchor" id="aeccb633d9226f37b800589483ea2f0f6a8908df67d5fb494d1799a270564789f8"></a><!-- doxytag: member="FourthOrder" ref="aeccb633d9226f37b800589483ea2f0f6a8908df67d5fb494d1799a270564789f8" args="" -->FourthOrder</em> </td><td>
<p>Fourth-order approximation (local, non-monotonic, linear) </p>
</td></tr>
<tr><td valign="top"><em><a class="anchor" id="aeccb633d9226f37b800589483ea2f0f6a6c56130d695e3aea964232dacfa2c298"></a><!-- doxytag: member="Parabolic" ref="aeccb633d9226f37b800589483ea2f0f6a6c56130d695e3aea964232dacfa2c298" args="" -->Parabolic</em> </td><td>
<p>Parabolic approximation (local, non-monotonic, linear) </p>
</td></tr>
<tr><td valign="top"><em><a class="anchor" id="aeccb633d9226f37b800589483ea2f0f6ac194b4cb0838c7c484b13eb6d6dc0010"></a><!-- doxytag: member="FritschButland" ref="aeccb633d9226f37b800589483ea2f0f6ac194b4cb0838c7c484b13eb6d6dc0010" args="" -->FritschButland</em> </td><td>
<p>Fritsch-Butland approximation (local, monotonic, non-linear) </p>
</td></tr>
<tr><td valign="top"><em><a class="anchor" id="aeccb633d9226f37b800589483ea2f0f6ab1ddc152184a0f96b8f6e9be8168e708"></a><!-- doxytag: member="Akima" ref="aeccb633d9226f37b800589483ea2f0f6ab1ddc152184a0f96b8f6e9be8168e708" args="" -->Akima</em> </td><td>
<p>Akima approximation (local, non-monotonic, non-linear) </p>
</td></tr>
<tr><td valign="top"><em><a class="anchor" id="aeccb633d9226f37b800589483ea2f0f6a065fa14c1b83af108fdae0c713695951"></a><!-- doxytag: member="Kruger" ref="aeccb633d9226f37b800589483ea2f0f6a065fa14c1b83af108fdae0c713695951" args="" -->Kruger</em> </td><td>
<p>Kruger approximation (local, monotonic, non-linear) </p>
</td></tr>
</table>
</dd>
</dl>
</div>
</div>
<a class="anchor" id="af3393571fa8a8daa4ee5c06613b26555"></a><!-- doxytag: member="QuantLib::CubicInterpolation::BoundaryCondition" ref="af3393571fa8a8daa4ee5c06613b26555" args="" -->
<div class="memitem">
<div class="memproto">
<table class="memname">
<tr>
<td class="memname">enum <a class="el" href="class_quant_lib_1_1_cubic_interpolation.html#af3393571fa8a8daa4ee5c06613b26555">BoundaryCondition</a></td>
</tr>
</table>
</div>
<div class="memdoc">
<dl><dt><b>Enumerator: </b></dt><dd><table border="0" cellspacing="2" cellpadding="0">
<tr><td valign="top"><em><a class="anchor" id="af3393571fa8a8daa4ee5c06613b26555a7922e3c8bf97083083c9261300dcfedf"></a><!-- doxytag: member="NotAKnot" ref="af3393571fa8a8daa4ee5c06613b26555a7922e3c8bf97083083c9261300dcfedf" args="" -->NotAKnot</em> </td><td>
<p>Make second(-last) point an inactive knot. </p>
</td></tr>
<tr><td valign="top"><em><a class="anchor" id="af3393571fa8a8daa4ee5c06613b26555aaf8392865aea8f24355012391183d9e9"></a><!-- doxytag: member="FirstDerivative" ref="af3393571fa8a8daa4ee5c06613b26555aaf8392865aea8f24355012391183d9e9" args="" -->FirstDerivative</em> </td><td>
<p>Match value of end-slope. </p>
</td></tr>
<tr><td valign="top"><em><a class="anchor" id="af3393571fa8a8daa4ee5c06613b26555a23de8c854eb282410ba10963837c94b5"></a><!-- doxytag: member="SecondDerivative" ref="af3393571fa8a8daa4ee5c06613b26555a23de8c854eb282410ba10963837c94b5" args="" -->SecondDerivative</em> </td><td>
<p>Match value of second derivative at end. </p>
</td></tr>
<tr><td valign="top"><em><a class="anchor" id="af3393571fa8a8daa4ee5c06613b26555a6db09e3bc054df6f996a45de2ccfeacd"></a><!-- doxytag: member="Periodic" ref="af3393571fa8a8daa4ee5c06613b26555a6db09e3bc054df6f996a45de2ccfeacd" args="" -->Periodic</em> </td><td>
<p>Match first and second derivative at either end. </p>
</td></tr>
<tr><td valign="top"><em><a class="anchor" id="af3393571fa8a8daa4ee5c06613b26555a1e1c27164b52b5cdf7df7f110dbb0fd3"></a><!-- doxytag: member="Lagrange" ref="af3393571fa8a8daa4ee5c06613b26555a1e1c27164b52b5cdf7df7f110dbb0fd3" args="" -->Lagrange</em> </td><td>
<p>Match end-slope to the slope of the cubic that matches the first four data at the respective end </p>
</td></tr>
</table>
</dd>
</dl>
</div>
</div>
<hr/><h2>Constructor & Destructor Documentation</h2>
<a class="anchor" id="a4660490e94d17a41507f676a5eb41a15"></a><!-- doxytag: member="QuantLib::CubicInterpolation::CubicInterpolation" ref="a4660490e94d17a41507f676a5eb41a15" args="(const I1 &xBegin, const I1 &xEnd, const I2 &yBegin, CubicInterpolation::DerivativeApprox da, bool monotonic, CubicInterpolation::BoundaryCondition leftCond, Real leftConditionValue, CubicInterpolation::BoundaryCondition rightCond, Real rightConditionValue)" -->
<div class="memitem">
<div class="memproto">
<table class="memname">
<tr>
<td class="memname"><a class="el" href="class_quant_lib_1_1_cubic_interpolation.html">CubicInterpolation</a> </td>
<td>(</td>
<td class="paramtype">const I1 & </td>
<td class="paramname"><em>xBegin</em>, </td>
</tr>
<tr>
<td class="paramkey"></td>
<td></td>
<td class="paramtype">const I1 & </td>
<td class="paramname"><em>xEnd</em>, </td>
</tr>
<tr>
<td class="paramkey"></td>
<td></td>
<td class="paramtype">const I2 & </td>
<td class="paramname"><em>yBegin</em>, </td>
</tr>
<tr>
<td class="paramkey"></td>
<td></td>
<td class="paramtype"><a class="el" href="class_quant_lib_1_1_cubic_interpolation.html#aeccb633d9226f37b800589483ea2f0f6">CubicInterpolation::DerivativeApprox</a> </td>
<td class="paramname"><em>da</em>, </td>
</tr>
<tr>
<td class="paramkey"></td>
<td></td>
<td class="paramtype">bool </td>
<td class="paramname"><em>monotonic</em>, </td>
</tr>
<tr>
<td class="paramkey"></td>
<td></td>
<td class="paramtype"><a class="el" href="class_quant_lib_1_1_cubic_interpolation.html#af3393571fa8a8daa4ee5c06613b26555">CubicInterpolation::BoundaryCondition</a> </td>
<td class="paramname"><em>leftCond</em>, </td>
</tr>
<tr>
<td class="paramkey"></td>
<td></td>
<td class="paramtype"><a class="el" href="group__types.html#ga4bdf4bfe76b9ffa6fa64c47d8bfa0c78">Real</a> </td>
<td class="paramname"><em>leftConditionValue</em>, </td>
</tr>
<tr>
<td class="paramkey"></td>
<td></td>
<td class="paramtype"><a class="el" href="class_quant_lib_1_1_cubic_interpolation.html#af3393571fa8a8daa4ee5c06613b26555">CubicInterpolation::BoundaryCondition</a> </td>
<td class="paramname"><em>rightCond</em>, </td>
</tr>
<tr>
<td class="paramkey"></td>
<td></td>
<td class="paramtype"><a class="el" href="group__types.html#ga4bdf4bfe76b9ffa6fa64c47d8bfa0c78">Real</a> </td>
<td class="paramname"><em>rightConditionValue</em> </td>
</tr>
<tr>
<td></td>
<td>)</td>
<td></td><td></td>
</tr>
</table>
</div>
<div class="memdoc">
<dl class="pre"><dt><b>Precondition:</b></dt><dd>the <img class="formulaInl" alt="$ x $" src="form_134.png"/> values must be sorted. </dd></dl>
</div>
</div>
</div><!-- contents -->
</div>
<div class="footer">
<div class="endmatter">
Documentation generated by
<a href="http://www.doxygen.org">Doxygen</a> 1.7.6.1
</div>
</div>
</div>
</body>
</html>
|