1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134
|
<!DOCTYPE HTML PUBLIC "-//W3C//DTD HTML 4.01 Transitional//EN">
<html>
<head>
<meta http-equiv="Content-Type" content="text/html;charset=UTF-8">
<meta name="robots" content="none">
<title>GaussianOrthogonalPolynomial Class Reference</title>
<link rel="stylesheet" href="quantlib.css" type="text/css">
<link rel="stylesheet" href="print.css" type="text/css" media="print">
<link rel="shortcut icon" href="favicon.ico" type="image/x-icon">
<link rel="icon" href="favicon.ico" type="image/x-icon">
</head>
<body>
<div id="container">
<div id="header">
<img class="titleimage"
src="QL-title.jpg" width="185" height="50" border="0"
alt="QuantLib">
<br>
<h3 class="subtitle">A free/open-source library for quantitative finance</h3>
</div>
<div id="menu">
<h3 class="navbartitle">Version 1.2</h3>
<hr>
<h3 class="navbartitle">Getting started</h3>
<ul class="navbarlist">
<li class="navlink"><a href="index.html">Introduction</a></li>
<li class="navlink"><a href="where.html">Where to get QuantLib</a></li>
<li class="navlink"><a href="install.html">Installation</a></li>
<li class="navlink"><a href="config.html">Configuration</a></li>
<li class="navlink"><a href="usage.html">Usage</a></li>
<li class="navlink"><a href="history.html">Version history</a></li>
<li class="navlink"><a href="resources.html">Additional resources</a></li>
<li class="navlink"><a href="group.html">The QuantLib group</a></li>
<li class="navlink"><a href="license.html">Copyright and license</a></li>
</ul>
<hr>
<h3 class="navbartitle">Reference manual</h3>
<ul class="navbarlist">
<li class="navlink"><a href="modules.html">Modules</a></li>
<li class="navlink"><a href="hierarchy.html">Class Hierarchy</a></li>
<li class="navlink"><a href="annotated.html">Compound List</a></li>
<li class="navlink"><a href="files.html">File List</a></li>
<li class="navlink"><a href="functions.html">Compound Members</a></li>
<li class="navlink"><a href="globals.html">File Members</a></li>
<li class="navlink"><a href="todo.html">Todo List</a></li>
<li class="navlink"><a href="bug.html">Known Bugs</a></li>
<li class="navlink"><a href="caveats.html">Caveats</a></li>
<li class="navlink"><a href="test.html">Test Suite</a></li>
<li class="navlink"><a href="examples.html">Examples</a></li>
</ul>
</div>
<div id="content">
<!--Doxygen-generated content-->
<!-- Generated by Doxygen 1.7.6.1 -->
<div id="nav-path" class="navpath">
<ul>
<li class="navelem"><b>QuantLib</b> </li>
<li class="navelem"><a class="el" href="class_quant_lib_1_1_gaussian_orthogonal_polynomial.html">GaussianOrthogonalPolynomial</a> </li>
</ul>
</div>
</div>
<div class="header">
<div class="summary">
<a href="#pub-methods">Public Member Functions</a> </div>
<div class="headertitle">
<div class="title">GaussianOrthogonalPolynomial Class Reference</div> </div>
</div><!--header-->
<div class="contents">
<!-- doxytag: class="QuantLib::GaussianOrthogonalPolynomial" -->
<p>orthogonal polynomial for Gaussian quadratures
<a href="class_quant_lib_1_1_gaussian_orthogonal_polynomial.html#details">More...</a></p>
<p><code>#include <ql/math/integrals/gaussianorthogonalpolynomial.hpp></code></p>
<div class="dynheader">
Inheritance diagram for GaussianOrthogonalPolynomial:</div>
<div class="dyncontent">
<div class="center"><img src="class_quant_lib_1_1_gaussian_orthogonal_polynomial__inherit__graph.png" border="0" usemap="#_gaussian_orthogonal_polynomial_inherit__map" alt="Inheritance graph"/></div>
<map name="_gaussian_orthogonal_polynomial_inherit__map" id="_gaussian_orthogonal_polynomial_inherit__map">
<area shape="rect" id="node3" href="class_quant_lib_1_1_gauss_hermite_polynomial.html" title="Gauss-Hermite polynomial." alt="" coords="265,5,431,35"/><area shape="rect" id="node5" href="class_quant_lib_1_1_gauss_hyperbolic_polynomial.html" title="Gauss hyperbolic polynomial." alt="" coords="257,58,439,89"/><area shape="rect" id="node7" href="class_quant_lib_1_1_gauss_jacobi_polynomial.html" title="Gauss-Jacobi polynomial." alt="" coords="268,111,428,142"/><area shape="rect" id="node9" href="class_quant_lib_1_1_gauss_laguerre_polynomial.html" title="Gauss-Laguerre polynomial." alt="" coords="263,165,433,195"/></map>
<center><span class="legend">[<a href="graph_legend.html">legend</a>]</span></center></div>
<p><a href="class_quant_lib_1_1_gaussian_orthogonal_polynomial-members.html">List of all members.</a></p>
<table class="memberdecls">
<tr><td colspan="2"><h2><a name="pub-methods"></a>
Public Member Functions</h2></td></tr>
<tr><td class="memItemLeft" align="right" valign="top"><a class="anchor" id="a285550e8d0f3964935a6301d1d2f4037"></a><!-- doxytag: member="QuantLib::GaussianOrthogonalPolynomial::mu_0" ref="a285550e8d0f3964935a6301d1d2f4037" args="() const =0" -->
virtual <a class="el" href="group__types.html#ga4bdf4bfe76b9ffa6fa64c47d8bfa0c78">Real</a> </td><td class="memItemRight" valign="bottom"><b>mu_0</b> () const =0</td></tr>
<tr><td class="memItemLeft" align="right" valign="top"><a class="anchor" id="a4b62a25af75d692dbf58ce06f96184ca"></a><!-- doxytag: member="QuantLib::GaussianOrthogonalPolynomial::alpha" ref="a4b62a25af75d692dbf58ce06f96184ca" args="(Size i) const =0" -->
virtual <a class="el" href="group__types.html#ga4bdf4bfe76b9ffa6fa64c47d8bfa0c78">Real</a> </td><td class="memItemRight" valign="bottom"><b>alpha</b> (<a class="el" href="group__types.html#gaf38bdb4c54463b1f456655efa95b5c77">Size</a> i) const =0</td></tr>
<tr><td class="memItemLeft" align="right" valign="top"><a class="anchor" id="ad9af9b51bda36a25555694b57ed3014c"></a><!-- doxytag: member="QuantLib::GaussianOrthogonalPolynomial::beta" ref="ad9af9b51bda36a25555694b57ed3014c" args="(Size i) const =0" -->
virtual <a class="el" href="group__types.html#ga4bdf4bfe76b9ffa6fa64c47d8bfa0c78">Real</a> </td><td class="memItemRight" valign="bottom"><b>beta</b> (<a class="el" href="group__types.html#gaf38bdb4c54463b1f456655efa95b5c77">Size</a> i) const =0</td></tr>
<tr><td class="memItemLeft" align="right" valign="top"><a class="anchor" id="af8bd61e6c7a4d4d245f25e375ff42fa8"></a><!-- doxytag: member="QuantLib::GaussianOrthogonalPolynomial::w" ref="af8bd61e6c7a4d4d245f25e375ff42fa8" args="(Real x) const =0" -->
virtual <a class="el" href="group__types.html#ga4bdf4bfe76b9ffa6fa64c47d8bfa0c78">Real</a> </td><td class="memItemRight" valign="bottom"><b>w</b> (<a class="el" href="group__types.html#ga4bdf4bfe76b9ffa6fa64c47d8bfa0c78">Real</a> x) const =0</td></tr>
<tr><td class="memItemLeft" align="right" valign="top"><a class="anchor" id="a452af47b58099bbec68537241bd743f7"></a><!-- doxytag: member="QuantLib::GaussianOrthogonalPolynomial::value" ref="a452af47b58099bbec68537241bd743f7" args="(Size i, Real x) const " -->
<a class="el" href="group__types.html#ga4bdf4bfe76b9ffa6fa64c47d8bfa0c78">Real</a> </td><td class="memItemRight" valign="bottom"><b>value</b> (<a class="el" href="group__types.html#gaf38bdb4c54463b1f456655efa95b5c77">Size</a> i, <a class="el" href="group__types.html#ga4bdf4bfe76b9ffa6fa64c47d8bfa0c78">Real</a> x) const </td></tr>
<tr><td class="memItemLeft" align="right" valign="top"><a class="anchor" id="aef33067e7357c2c91caa62c6f38ecaa1"></a><!-- doxytag: member="QuantLib::GaussianOrthogonalPolynomial::weightedValue" ref="aef33067e7357c2c91caa62c6f38ecaa1" args="(Size i, Real x) const " -->
<a class="el" href="group__types.html#ga4bdf4bfe76b9ffa6fa64c47d8bfa0c78">Real</a> </td><td class="memItemRight" valign="bottom"><b>weightedValue</b> (<a class="el" href="group__types.html#gaf38bdb4c54463b1f456655efa95b5c77">Size</a> i, <a class="el" href="group__types.html#ga4bdf4bfe76b9ffa6fa64c47d8bfa0c78">Real</a> x) const </td></tr>
</table>
<hr/><a name="details" id="details"></a><h2>Detailed Description</h2>
<div class="textblock"><p>orthogonal polynomial for Gaussian quadratures </p>
<p>References: Gauss quadratures and orthogonal polynomials</p>
<p>G.H. Gloub and J.H. Welsch: Calculation of Gauss quadrature rule. Math. Comput. 23 (1986), 221-230</p>
<p>"Numerical Recipes in C", 2nd edition, Press, Teukolsky, Vetterling, Flannery,</p>
<p>The polynomials are defined by the three-term recurrence relation </p>
<p class="formulaDsp">
<img class="formulaDsp" alt="\[ P_{k+1}(x)=(x-\alpha_k) P_k(x) - \beta_k P_{k-1}(x) \]" src="form_188.png"/>
</p>
<p> and </p>
<p class="formulaDsp">
<img class="formulaDsp" alt="\[ \mu_0 = \int{w(x)dx} \]" src="form_189.png"/>
</p>
</div></div><!-- contents -->
</div>
<div class="footer">
<div class="endmatter">
Documentation generated by
<a href="http://www.doxygen.org">Doxygen</a> 1.7.6.1
</div>
</div>
</div>
</body>
</html>
|