File: group__lattices.html

package info (click to toggle)
quantlib-refman-html 1.20-1
  • links: PTS, VCS
  • area: main
  • in suites: bookworm, bullseye, forky, sid, trixie
  • size: 103,140 kB
  • sloc: javascript: 13,408; makefile: 35
file content (203 lines) | stat: -rw-r--r-- 21,269 bytes parent folder | download
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
<!DOCTYPE html PUBLIC "-//W3C//DTD XHTML 1.0 Transitional//EN" "http://www.w3.org/TR/xhtml1/DTD/xhtml1-transitional.dtd">
<html xmlns="http://www.w3.org/1999/xhtml">
<head>
<meta http-equiv="Content-Type" content="text/xhtml;charset=UTF-8"/>
<meta http-equiv="X-UA-Compatible" content="IE=9"/>
<meta name="generator" content="Doxygen 1.8.20"/>
<meta name="viewport" content="width=device-width, initial-scale=1"/>
<title>QuantLib: Lattice methods</title>
<link href='https://fonts.googleapis.com/css?family=Merriweather+Sans:800' rel='stylesheet' type='text/css'>
<link href="tabs.css" rel="stylesheet" type="text/css"/>
<script type="text/javascript" src="jquery.js"></script>
<script type="text/javascript" src="dynsections.js"></script>
<link href="search/search.css" rel="stylesheet" type="text/css"/>
<script type="text/javascript" src="search/searchdata.js"></script>
<script type="text/javascript" src="search/search.js"></script>
<script type="text/x-mathjax-config">
  MathJax.Hub.Config({
    extensions: ["tex2jax.js"],
    jax: ["input/TeX","output/HTML-CSS"],
});
</script>
<script type="text/javascript" async="async" src="https://cdnjs.cloudflare.com/ajax/libs/mathjax/2.7.5/MathJax.js"></script>
<link href="doxygen.css" rel="stylesheet" type="text/css" />
<link href="quantlibextra.css" rel="stylesheet" type="text/css"/>
</head>
<body>
<div id="top"><!-- do not remove this div, it is closed by doxygen! -->
<div id="titlearea">
<table cellspacing="0" cellpadding="0">
 <tbody>
 <tr style="height: 56px;">
  <td id="projectalign" style="padding-left: 0.5em;">
   <div id="projectname"><a href="http://quantlib.org">
       <img alt="QuantLib" src="QL-title.jpg"></a>
   <div id="projectbrief">A free/open-source library for quantitative finance</div>
   <div id="projectnumber">Reference manual - version 1.20</div>
   </div>
  </td>
 </tr>
 </tbody>
</table>
</div>
<!-- end header part -->
<!-- Generated by Doxygen 1.8.20 -->
<script type="text/javascript">
/* @license magnet:?xt=urn:btih:cf05388f2679ee054f2beb29a391d25f4e673ac3&amp;dn=gpl-2.0.txt GPL-v2 */
var searchBox = new SearchBox("searchBox", "search",false,'Search');
/* @license-end */
</script>
<script type="text/javascript" src="menudata.js"></script>
<script type="text/javascript" src="menu.js"></script>
<script type="text/javascript">
/* @license magnet:?xt=urn:btih:cf05388f2679ee054f2beb29a391d25f4e673ac3&amp;dn=gpl-2.0.txt GPL-v2 */
$(function() {
  initMenu('',true,false,'search.php','Search');
  $(document).ready(function() { init_search(); });
});
/* @license-end */</script>
<div id="main-nav"></div>
</div><!-- top -->
<!-- window showing the filter options -->
<div id="MSearchSelectWindow"
     onmouseover="return searchBox.OnSearchSelectShow()"
     onmouseout="return searchBox.OnSearchSelectHide()"
     onkeydown="return searchBox.OnSearchSelectKey(event)">
</div>

<!-- iframe showing the search results (closed by default) -->
<div id="MSearchResultsWindow">
<iframe src="javascript:void(0)" frameborder="0" 
        name="MSearchResults" id="MSearchResults">
</iframe>
</div>

<div class="header">
  <div class="summary">
<a href="#nested-classes">Classes</a>  </div>
  <div class="headertitle">
<div class="title">Lattice methods</div>  </div>
</div><!--header-->
<div class="contents">
<table class="memberdecls">
<tr class="heading"><td colspan="2"><h2 class="groupheader"><a name="nested-classes"></a>
Classes</h2></td></tr>
<tr class="memitem:"><td class="memItemLeft" align="right" valign="top">class &#160;</td><td class="memItemRight" valign="bottom"><a class="el" href="class_quant_lib_1_1_tsiveriotis_fernandes_lattice.html">TsiveriotisFernandesLattice&lt; T &gt;</a></td></tr>
<tr class="memdesc:"><td class="mdescLeft">&#160;</td><td class="mdescRight">Binomial lattice approximating the Tsiveriotis-Fernandes model.  <a href="class_quant_lib_1_1_tsiveriotis_fernandes_lattice.html#details">More...</a><br /></td></tr>
<tr class="separator:"><td class="memSeparator" colspan="2">&#160;</td></tr>
<tr class="memitem:"><td class="memItemLeft" align="right" valign="top">class &#160;</td><td class="memItemRight" valign="bottom"><a class="el" href="class_quant_lib_1_1_extended_binomial_tree.html">ExtendedBinomialTree&lt; T &gt;</a></td></tr>
<tr class="memdesc:"><td class="mdescLeft">&#160;</td><td class="mdescRight">Binomial tree base class.  <a href="class_quant_lib_1_1_extended_binomial_tree.html#details">More...</a><br /></td></tr>
<tr class="separator:"><td class="memSeparator" colspan="2">&#160;</td></tr>
<tr class="memitem:"><td class="memItemLeft" align="right" valign="top">class &#160;</td><td class="memItemRight" valign="bottom"><a class="el" href="class_quant_lib_1_1_extended_equal_probabilities_binomial_tree.html">ExtendedEqualProbabilitiesBinomialTree&lt; T &gt;</a></td></tr>
<tr class="memdesc:"><td class="mdescLeft">&#160;</td><td class="mdescRight">Base class for equal probabilities binomial tree.  <a href="class_quant_lib_1_1_extended_equal_probabilities_binomial_tree.html#details">More...</a><br /></td></tr>
<tr class="separator:"><td class="memSeparator" colspan="2">&#160;</td></tr>
<tr class="memitem:"><td class="memItemLeft" align="right" valign="top">class &#160;</td><td class="memItemRight" valign="bottom"><a class="el" href="class_quant_lib_1_1_extended_equal_jumps_binomial_tree.html">ExtendedEqualJumpsBinomialTree&lt; T &gt;</a></td></tr>
<tr class="memdesc:"><td class="mdescLeft">&#160;</td><td class="mdescRight">Base class for equal jumps binomial tree.  <a href="class_quant_lib_1_1_extended_equal_jumps_binomial_tree.html#details">More...</a><br /></td></tr>
<tr class="separator:"><td class="memSeparator" colspan="2">&#160;</td></tr>
<tr class="memitem:"><td class="memItemLeft" align="right" valign="top">class &#160;</td><td class="memItemRight" valign="bottom"><a class="el" href="class_quant_lib_1_1_extended_jarrow_rudd.html">ExtendedJarrowRudd</a></td></tr>
<tr class="memdesc:"><td class="mdescLeft">&#160;</td><td class="mdescRight">Jarrow-Rudd (multiplicative) equal probabilities binomial tree.  <a href="class_quant_lib_1_1_extended_jarrow_rudd.html#details">More...</a><br /></td></tr>
<tr class="separator:"><td class="memSeparator" colspan="2">&#160;</td></tr>
<tr class="memitem:"><td class="memItemLeft" align="right" valign="top">class &#160;</td><td class="memItemRight" valign="bottom"><a class="el" href="class_quant_lib_1_1_extended_cox_ross_rubinstein.html">ExtendedCoxRossRubinstein</a></td></tr>
<tr class="memdesc:"><td class="mdescLeft">&#160;</td><td class="mdescRight">Cox-Ross-Rubinstein (multiplicative) equal jumps binomial tree.  <a href="class_quant_lib_1_1_extended_cox_ross_rubinstein.html#details">More...</a><br /></td></tr>
<tr class="separator:"><td class="memSeparator" colspan="2">&#160;</td></tr>
<tr class="memitem:"><td class="memItemLeft" align="right" valign="top">class &#160;</td><td class="memItemRight" valign="bottom"><a class="el" href="class_quant_lib_1_1_extended_additive_e_q_p_binomial_tree.html">ExtendedAdditiveEQPBinomialTree</a></td></tr>
<tr class="memdesc:"><td class="mdescLeft">&#160;</td><td class="mdescRight">Additive equal probabilities binomial tree.  <a href="class_quant_lib_1_1_extended_additive_e_q_p_binomial_tree.html#details">More...</a><br /></td></tr>
<tr class="separator:"><td class="memSeparator" colspan="2">&#160;</td></tr>
<tr class="memitem:"><td class="memItemLeft" align="right" valign="top">class &#160;</td><td class="memItemRight" valign="bottom"><a class="el" href="class_quant_lib_1_1_extended_trigeorgis.html">ExtendedTrigeorgis</a></td></tr>
<tr class="memdesc:"><td class="mdescLeft">&#160;</td><td class="mdescRight">Trigeorgis (additive equal jumps) binomial tree  <a href="class_quant_lib_1_1_extended_trigeorgis.html#details">More...</a><br /></td></tr>
<tr class="separator:"><td class="memSeparator" colspan="2">&#160;</td></tr>
<tr class="memitem:"><td class="memItemLeft" align="right" valign="top">class &#160;</td><td class="memItemRight" valign="bottom"><a class="el" href="class_quant_lib_1_1_extended_tian.html">ExtendedTian</a></td></tr>
<tr class="memdesc:"><td class="mdescLeft">&#160;</td><td class="mdescRight">Tian tree: third moment matching, multiplicative approach  <a href="class_quant_lib_1_1_extended_tian.html#details">More...</a><br /></td></tr>
<tr class="separator:"><td class="memSeparator" colspan="2">&#160;</td></tr>
<tr class="memitem:"><td class="memItemLeft" align="right" valign="top">class &#160;</td><td class="memItemRight" valign="bottom"><a class="el" href="class_quant_lib_1_1_extended_leisen_reimer.html">ExtendedLeisenReimer</a></td></tr>
<tr class="memdesc:"><td class="mdescLeft">&#160;</td><td class="mdescRight">Leisen &amp; Reimer tree: multiplicative approach.  <a href="class_quant_lib_1_1_extended_leisen_reimer.html#details">More...</a><br /></td></tr>
<tr class="separator:"><td class="memSeparator" colspan="2">&#160;</td></tr>
<tr class="memitem:"><td class="memItemLeft" align="right" valign="top">class &#160;</td><td class="memItemRight" valign="bottom"><a class="el" href="class_quant_lib_1_1_binomial_tree.html">BinomialTree&lt; T &gt;</a></td></tr>
<tr class="memdesc:"><td class="mdescLeft">&#160;</td><td class="mdescRight">Binomial tree base class.  <a href="class_quant_lib_1_1_binomial_tree.html#details">More...</a><br /></td></tr>
<tr class="separator:"><td class="memSeparator" colspan="2">&#160;</td></tr>
<tr class="memitem:"><td class="memItemLeft" align="right" valign="top">class &#160;</td><td class="memItemRight" valign="bottom"><a class="el" href="class_quant_lib_1_1_equal_probabilities_binomial_tree.html">EqualProbabilitiesBinomialTree&lt; T &gt;</a></td></tr>
<tr class="memdesc:"><td class="mdescLeft">&#160;</td><td class="mdescRight">Base class for equal probabilities binomial tree.  <a href="class_quant_lib_1_1_equal_probabilities_binomial_tree.html#details">More...</a><br /></td></tr>
<tr class="separator:"><td class="memSeparator" colspan="2">&#160;</td></tr>
<tr class="memitem:"><td class="memItemLeft" align="right" valign="top">class &#160;</td><td class="memItemRight" valign="bottom"><a class="el" href="class_quant_lib_1_1_equal_jumps_binomial_tree.html">EqualJumpsBinomialTree&lt; T &gt;</a></td></tr>
<tr class="memdesc:"><td class="mdescLeft">&#160;</td><td class="mdescRight">Base class for equal jumps binomial tree.  <a href="class_quant_lib_1_1_equal_jumps_binomial_tree.html#details">More...</a><br /></td></tr>
<tr class="separator:"><td class="memSeparator" colspan="2">&#160;</td></tr>
<tr class="memitem:"><td class="memItemLeft" align="right" valign="top">class &#160;</td><td class="memItemRight" valign="bottom"><a class="el" href="class_quant_lib_1_1_jarrow_rudd.html">JarrowRudd</a></td></tr>
<tr class="memdesc:"><td class="mdescLeft">&#160;</td><td class="mdescRight">Jarrow-Rudd (multiplicative) equal probabilities binomial tree.  <a href="class_quant_lib_1_1_jarrow_rudd.html#details">More...</a><br /></td></tr>
<tr class="separator:"><td class="memSeparator" colspan="2">&#160;</td></tr>
<tr class="memitem:"><td class="memItemLeft" align="right" valign="top">class &#160;</td><td class="memItemRight" valign="bottom"><a class="el" href="class_quant_lib_1_1_cox_ross_rubinstein.html">CoxRossRubinstein</a></td></tr>
<tr class="memdesc:"><td class="mdescLeft">&#160;</td><td class="mdescRight">Cox-Ross-Rubinstein (multiplicative) equal jumps binomial tree.  <a href="class_quant_lib_1_1_cox_ross_rubinstein.html#details">More...</a><br /></td></tr>
<tr class="separator:"><td class="memSeparator" colspan="2">&#160;</td></tr>
<tr class="memitem:"><td class="memItemLeft" align="right" valign="top">class &#160;</td><td class="memItemRight" valign="bottom"><a class="el" href="class_quant_lib_1_1_additive_e_q_p_binomial_tree.html">AdditiveEQPBinomialTree</a></td></tr>
<tr class="memdesc:"><td class="mdescLeft">&#160;</td><td class="mdescRight">Additive equal probabilities binomial tree.  <a href="class_quant_lib_1_1_additive_e_q_p_binomial_tree.html#details">More...</a><br /></td></tr>
<tr class="separator:"><td class="memSeparator" colspan="2">&#160;</td></tr>
<tr class="memitem:"><td class="memItemLeft" align="right" valign="top">class &#160;</td><td class="memItemRight" valign="bottom"><a class="el" href="class_quant_lib_1_1_trigeorgis.html">Trigeorgis</a></td></tr>
<tr class="memdesc:"><td class="mdescLeft">&#160;</td><td class="mdescRight">Trigeorgis (additive equal jumps) binomial tree  <a href="class_quant_lib_1_1_trigeorgis.html#details">More...</a><br /></td></tr>
<tr class="separator:"><td class="memSeparator" colspan="2">&#160;</td></tr>
<tr class="memitem:"><td class="memItemLeft" align="right" valign="top">class &#160;</td><td class="memItemRight" valign="bottom"><a class="el" href="class_quant_lib_1_1_tian.html">Tian</a></td></tr>
<tr class="memdesc:"><td class="mdescLeft">&#160;</td><td class="mdescRight">Tian tree: third moment matching, multiplicative approach  <a href="class_quant_lib_1_1_tian.html#details">More...</a><br /></td></tr>
<tr class="separator:"><td class="memSeparator" colspan="2">&#160;</td></tr>
<tr class="memitem:"><td class="memItemLeft" align="right" valign="top">class &#160;</td><td class="memItemRight" valign="bottom"><a class="el" href="class_quant_lib_1_1_leisen_reimer.html">LeisenReimer</a></td></tr>
<tr class="memdesc:"><td class="mdescLeft">&#160;</td><td class="mdescRight">Leisen &amp; Reimer tree: multiplicative approach.  <a href="class_quant_lib_1_1_leisen_reimer.html#details">More...</a><br /></td></tr>
<tr class="separator:"><td class="memSeparator" colspan="2">&#160;</td></tr>
<tr class="memitem:"><td class="memItemLeft" align="right" valign="top">class &#160;</td><td class="memItemRight" valign="bottom"><a class="el" href="class_quant_lib_1_1_black_scholes_lattice.html">BlackScholesLattice&lt; T &gt;</a></td></tr>
<tr class="memdesc:"><td class="mdescLeft">&#160;</td><td class="mdescRight">Simple binomial lattice approximating the Black-Scholes model.  <a href="class_quant_lib_1_1_black_scholes_lattice.html#details">More...</a><br /></td></tr>
<tr class="separator:"><td class="memSeparator" colspan="2">&#160;</td></tr>
<tr class="memitem:"><td class="memItemLeft" align="right" valign="top">class &#160;</td><td class="memItemRight" valign="bottom"><a class="el" href="class_quant_lib_1_1_tree_lattice.html">TreeLattice&lt; Impl &gt;</a></td></tr>
<tr class="memdesc:"><td class="mdescLeft">&#160;</td><td class="mdescRight">Tree-based lattice-method base class.  <a href="class_quant_lib_1_1_tree_lattice.html#details">More...</a><br /></td></tr>
<tr class="separator:"><td class="memSeparator" colspan="2">&#160;</td></tr>
<tr class="memitem:"><td class="memItemLeft" align="right" valign="top">class &#160;</td><td class="memItemRight" valign="bottom"><a class="el" href="class_quant_lib_1_1_tree_lattice1_d.html">TreeLattice1D&lt; Impl &gt;</a></td></tr>
<tr class="memdesc:"><td class="mdescLeft">&#160;</td><td class="mdescRight">One-dimensional tree-based lattice.  <a href="class_quant_lib_1_1_tree_lattice1_d.html#details">More...</a><br /></td></tr>
<tr class="separator:"><td class="memSeparator" colspan="2">&#160;</td></tr>
<tr class="memitem:"><td class="memItemLeft" align="right" valign="top">class &#160;</td><td class="memItemRight" valign="bottom"><a class="el" href="class_quant_lib_1_1_tree_lattice2_d.html">TreeLattice2D&lt; Impl, T &gt;</a></td></tr>
<tr class="memdesc:"><td class="mdescLeft">&#160;</td><td class="mdescRight">Two-dimensional tree-based lattice.  <a href="class_quant_lib_1_1_tree_lattice2_d.html#details">More...</a><br /></td></tr>
<tr class="separator:"><td class="memSeparator" colspan="2">&#160;</td></tr>
<tr class="memitem:"><td class="memItemLeft" align="right" valign="top">class &#160;</td><td class="memItemRight" valign="bottom"><a class="el" href="class_quant_lib_1_1_tree.html">Tree&lt; T &gt;</a></td></tr>
<tr class="memdesc:"><td class="mdescLeft">&#160;</td><td class="mdescRight">Tree approximating a single-factor diffusion  <a href="class_quant_lib_1_1_tree.html#details">More...</a><br /></td></tr>
<tr class="separator:"><td class="memSeparator" colspan="2">&#160;</td></tr>
<tr class="memitem:"><td class="memItemLeft" align="right" valign="top">class &#160;</td><td class="memItemRight" valign="bottom"><a class="el" href="class_quant_lib_1_1_trinomial_tree.html">TrinomialTree</a></td></tr>
<tr class="memdesc:"><td class="mdescLeft">&#160;</td><td class="mdescRight">Recombining trinomial tree class.  <a href="class_quant_lib_1_1_trinomial_tree.html#details">More...</a><br /></td></tr>
<tr class="separator:"><td class="memSeparator" colspan="2">&#160;</td></tr>
</table>
<a name="details" id="details"></a><h2 class="groupheader">Detailed Description</h2>
<p>The framework (corresponding to the ql/Lattices directory) contains basic building blocks for pricing instruments using lattice methods (trees). A lattice, i.e. an instance of the abstract class <a class="el" href="class_quant_lib_1_1_lattice.html" title="Lattice (tree, finite-differences) base class">QuantLib::Lattice</a>, relies on one or several trees (each one approximating a diffusion process) to price an instance of the DiscretizedAsset class. Trees are instances of classes derived from <a class="el" href="class_quant_lib_1_1_tree.html" title="Tree approximating a single-factor diffusion">QuantLib::Tree</a>, classes which define the branching between nodes and transition probabilities.</p>
<h1><a class="anchor" id="binomial"></a>
Binomial trees</h1>
<p>The binomial method is the simplest numerical method that can be used to price path-independent derivatives. It is usually the preferred lattice method under the Black-Scholes-Merton model. As an example, let's see the framework implemented in the bsmlattice.hpp file. It is a method based on a binomial tree, with constant short-rate (discounting). There are several approaches to build the underlying binomial tree, like Jarrow-Rudd or Cox-Ross-Rubinstein.</p>
<h1><a class="anchor" id="trinomial"></a>
Trinomial trees</h1>
<p>When the underlying stochastic process has a mean-reverting pattern, it is usually better to use a trinomial tree instead of a binomial tree. An example is implemented in the <a class="el" href="class_quant_lib_1_1_trinomial_tree.html" title="Recombining trinomial tree class.">QuantLib::TrinomialTree</a> class, which is constructed using a diffusion process and a time-grid. The goal is to build a recombining trinomial tree that will discretize, at a finite set of times, the possible evolutions of a random variable \( y \) satisfying </p><p class="formulaDsp">
\[ dy_t = \mu(t, y_t) dt + \sigma(t, y_t) dW_t. \]
</p>
<p> At each node, there is a probability \( p_u, p_m \) and \( p_d \) to go through respectively the upper, the middle and the lower branch. These probabilities must satisfy </p><p class="formulaDsp">
\[ p_{u}y_{i+1,k+1}+p_{m}y_{i+1,k}+p_{d}y_{i+1,k-1}=E_{i,j} \]
</p>
<p> and </p><p class="formulaDsp">
\[ p_u y_{i+1,k+1}^2 + p_m y_{i+1,k}^2 + p_d y_{i+1,k-1}^2 = V^2_{i,j}+E_{i,j}^2, \]
</p>
<p> where k (the index of the node at the end of the middle branch) is the index of the node which is the nearest to the expected future value, \( E_{i,j}=\mathbf{E}\left( y(t_{i+1})|y(t_{i})=y_{i,j}\right) \) and \( V_{i,j}^{2}=\mathbf{Var}\{y(t_{i+1})|y(t_{i})=y_{i,j}\} \). If we suppose that the variance is only dependant on time \( V_{i,j}=V_{i} \) and set \( y_{i+1} \) to \( V_{i}\sqrt{3} \), we find that </p><p class="formulaDsp">
\[ p_{u} = \frac{1}{6}+\frac{(E_{i,j}-y_{i+1,k})^{2}}{6V_{i}^{2}} + \frac{E_{i,j}-y_{i+1,k}}{2\sqrt{3}V_{i}}, \]
</p>
 <p class="formulaDsp">
\[ p_{m} = \frac{2}{3}-\frac{(E_{i,j}-y_{i+1,k})^{2}}{3V_{i}^{2}}, \]
</p>
 <p class="formulaDsp">
\[ p_{d} = \frac{1}{6}+\frac{(E_{i,j}-y_{i+1,k})^{2}}{6V_{i}^{2}} - \frac{E_{i,j}-y_{i+1,k}}{2\sqrt{3}V_{i}}. \]
</p>
<h1><a class="anchor" id="bidimensional"></a>
Bidimensional lattices</h1>
<p>To come...</p>
<h1><a class="anchor" id="discretizedasset"></a>
The QuantLib::DiscretizedAsset class</h1>
<p>This class is a representation of the price of a derivative at a specific time. It is roughly an array of values, each value being associated to a state of the underlying stochastic variables. For the moment, it is only used when working with trees, but it should be quite easy to make a use of it in finite-differences methods. The two main points, when deriving classes from <a class="el" href="class_quant_lib_1_1_discretized_asset.html" title="Discretized asset class used by numerical methods.">QuantLib::DiscretizedAsset</a>, are:</p><ol type="1">
<li>Define the initialisation procedure (e.g. terminal payoff for european stock options).</li>
<li>Define the method adjusting values, when necessary, at each time steps (e.g. apply the step condition for american or bermudan options). Some examples are found in QuantLib::DiscretizedSwap and QuantLib::DiscretizedSwaption. </li>
</ol>
</div><!-- contents -->
<!-- HTML footer for doxygen 1.8.9.1-->
<!-- start footer part -->
<hr class="footer"/><address class="footer"><small>
Generated by <a href="http://www.doxygen.org/index.html">Doxygen</a>
1.8.20
</small></address>
</body>
</html>