1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112
|
/* ----------------------------------------------------------------------------
* This file was automatically generated by SWIG (http://www.swig.org).
* Version 1.3.29
*
* Do not make changes to this file unless you know what you are doing--modify
* the SWIG interface file instead.
* ----------------------------------------------------------------------------- */
package org.quantlib;
public class MultipleStatistics {
private long swigCPtr;
protected boolean swigCMemOwn;
protected MultipleStatistics(long cPtr, boolean cMemoryOwn) {
swigCMemOwn = cMemoryOwn;
swigCPtr = cPtr;
}
protected static long getCPtr(MultipleStatistics obj) {
return (obj == null) ? 0 : obj.swigCPtr;
}
protected void finalize() {
delete();
}
public void delete() {
if(swigCPtr != 0 && swigCMemOwn) {
swigCMemOwn = false;
QuantLibJNI.delete_MultipleStatistics(swigCPtr);
}
swigCPtr = 0;
}
public MultipleStatistics(long dimension) {
this(QuantLibJNI.new_MultipleStatistics(dimension), true);
}
public long size() {
return QuantLibJNI.MultipleStatistics_size(swigCPtr);
}
public long samples() {
return QuantLibJNI.MultipleStatistics_samples(swigCPtr);
}
public double weightSum() {
return QuantLibJNI.MultipleStatistics_weightSum(swigCPtr);
}
public DoubleVector mean() {
return new DoubleVector(QuantLibJNI.MultipleStatistics_mean(swigCPtr), true);
}
public DoubleVector variance() {
return new DoubleVector(QuantLibJNI.MultipleStatistics_variance(swigCPtr), true);
}
public DoubleVector standardDeviation() {
return new DoubleVector(QuantLibJNI.MultipleStatistics_standardDeviation(swigCPtr), true);
}
public DoubleVector errorEstimate() {
return new DoubleVector(QuantLibJNI.MultipleStatistics_errorEstimate(swigCPtr), true);
}
public DoubleVector skewness() {
return new DoubleVector(QuantLibJNI.MultipleStatistics_skewness(swigCPtr), true);
}
public DoubleVector kurtosis() {
return new DoubleVector(QuantLibJNI.MultipleStatistics_kurtosis(swigCPtr), true);
}
public DoubleVector min() {
return new DoubleVector(QuantLibJNI.MultipleStatistics_min(swigCPtr), true);
}
public DoubleVector max() {
return new DoubleVector(QuantLibJNI.MultipleStatistics_max(swigCPtr), true);
}
public Matrix covariance() {
return new Matrix(QuantLibJNI.MultipleStatistics_covariance(swigCPtr), true);
}
public Matrix correlation() {
return new Matrix(QuantLibJNI.MultipleStatistics_correlation(swigCPtr), true);
}
public void reset() {
QuantLibJNI.MultipleStatistics_reset(swigCPtr);
}
public void add(DoubleVector value, double weight) {
QuantLibJNI.MultipleStatistics_add__SWIG_0(swigCPtr, DoubleVector.getCPtr(value), weight);
}
public void add(DoubleVector value) {
QuantLibJNI.MultipleStatistics_add__SWIG_1(swigCPtr, DoubleVector.getCPtr(value));
}
public void add(Array value, double weight) {
QuantLibJNI.MultipleStatistics_add__SWIG_2(swigCPtr, Array.getCPtr(value), weight);
}
public void add(Array value) {
QuantLibJNI.MultipleStatistics_add__SWIG_3(swigCPtr, Array.getCPtr(value));
}
}
|