File: MultipleStatistics.java

package info (click to toggle)
quantlib-swig 0.3.13-3
  • links: PTS
  • area: main
  • in suites: etch, etch-m68k
  • size: 43,120 kB
  • ctags: 74,378
  • sloc: cpp: 795,926; ansic: 103,715; ml: 39,516; cs: 24,631; java: 17,063; perl: 12,601; python: 6,752; lisp: 2,223; ruby: 1,103; sh: 458; makefile: 319
file content (112 lines) | stat: -rw-r--r-- 3,206 bytes parent folder | download
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
/* ----------------------------------------------------------------------------
 * This file was automatically generated by SWIG (http://www.swig.org).
 * Version 1.3.29
 *
 * Do not make changes to this file unless you know what you are doing--modify
 * the SWIG interface file instead.
 * ----------------------------------------------------------------------------- */

package org.quantlib;

public class MultipleStatistics {
  private long swigCPtr;
  protected boolean swigCMemOwn;

  protected MultipleStatistics(long cPtr, boolean cMemoryOwn) {
    swigCMemOwn = cMemoryOwn;
    swigCPtr = cPtr;
  }

  protected static long getCPtr(MultipleStatistics obj) {
    return (obj == null) ? 0 : obj.swigCPtr;
  }

  protected void finalize() {
    delete();
  }

  public void delete() {
    if(swigCPtr != 0 && swigCMemOwn) {
      swigCMemOwn = false;
      QuantLibJNI.delete_MultipleStatistics(swigCPtr);
    }
    swigCPtr = 0;
  }

  public MultipleStatistics(long dimension) {
    this(QuantLibJNI.new_MultipleStatistics(dimension), true);
  }

  public long size() {
    return QuantLibJNI.MultipleStatistics_size(swigCPtr);
  }

  public long samples() {
    return QuantLibJNI.MultipleStatistics_samples(swigCPtr);
  }

  public double weightSum() {
    return QuantLibJNI.MultipleStatistics_weightSum(swigCPtr);
  }

  public DoubleVector mean() {
    return new DoubleVector(QuantLibJNI.MultipleStatistics_mean(swigCPtr), true);
  }

  public DoubleVector variance() {
    return new DoubleVector(QuantLibJNI.MultipleStatistics_variance(swigCPtr), true);
  }

  public DoubleVector standardDeviation() {
    return new DoubleVector(QuantLibJNI.MultipleStatistics_standardDeviation(swigCPtr), true);
  }

  public DoubleVector errorEstimate() {
    return new DoubleVector(QuantLibJNI.MultipleStatistics_errorEstimate(swigCPtr), true);
  }

  public DoubleVector skewness() {
    return new DoubleVector(QuantLibJNI.MultipleStatistics_skewness(swigCPtr), true);
  }

  public DoubleVector kurtosis() {
    return new DoubleVector(QuantLibJNI.MultipleStatistics_kurtosis(swigCPtr), true);
  }

  public DoubleVector min() {
    return new DoubleVector(QuantLibJNI.MultipleStatistics_min(swigCPtr), true);
  }

  public DoubleVector max() {
    return new DoubleVector(QuantLibJNI.MultipleStatistics_max(swigCPtr), true);
  }

  public Matrix covariance() {
    return new Matrix(QuantLibJNI.MultipleStatistics_covariance(swigCPtr), true);
  }

  public Matrix correlation() {
    return new Matrix(QuantLibJNI.MultipleStatistics_correlation(swigCPtr), true);
  }

  public void reset() {
    QuantLibJNI.MultipleStatistics_reset(swigCPtr);
  }

  public void add(DoubleVector value, double weight) {
    QuantLibJNI.MultipleStatistics_add__SWIG_0(swigCPtr, DoubleVector.getCPtr(value), weight);
  }

  public void add(DoubleVector value) {
    QuantLibJNI.MultipleStatistics_add__SWIG_1(swigCPtr, DoubleVector.getCPtr(value));
  }

  public void add(Array value, double weight) {
    QuantLibJNI.MultipleStatistics_add__SWIG_2(swigCPtr, Array.getCPtr(value), weight);
  }

  public void add(Array value) {
    QuantLibJNI.MultipleStatistics_add__SWIG_3(swigCPtr, Array.getCPtr(value));
  }

}