1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267
|
/*
Copyright (C) 2000, 2001, 2002, 2003 RiskMap srl
Copyright (C) 2003 StatPro Italia srl
Copyright (C) 2005 Dominic Thuillier
This file is part of QuantLib, a free-software/open-source library
for financial quantitative analysts and developers - http://quantlib.org/
QuantLib is free software: you can redistribute it and/or modify it under the
terms of the QuantLib license. You should have received a copy of the
license along with this program; if not, please email quantlib-dev@lists.sf.net
The license is also available online at http://quantlib.org/html/license.html
This program is distributed in the hope that it will be useful, but WITHOUT
ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or FITNESS
FOR A PARTICULAR PURPOSE. See the license for more details.
*/
#ifndef quantlib_optimizers_i
#define quantlib_optimizers_i
%include functions.i
// 1D Solvers
%{
using QuantLib::Bisection;
using QuantLib::Brent;
using QuantLib::FalsePosition;
using QuantLib::Newton;
using QuantLib::NewtonSafe;
using QuantLib::Ridder;
using QuantLib::Secant;
%}
#if defined(SWIGMZSCHEME)
%typecheck(SWIG_TYPECHECK_POINTER) Scheme_Object* {
$1 = 1;
}
#elif defined(SWIGGUILE)
%typecheck(SWIG_TYPECHECK_POINTER) SCM {
$1 = 1;
}
#endif
%define DeclareSolver(SolverName)
class SolverName {
#if defined(SWIGRUBY)
%rename("maxEvaluations=") setMaxEvaluations;
%rename("lowerBound=") setLowerBound;
%rename("upperBound=") setUpperBound;
#elif defined(SWIGMZSCHEME) || defined(SWIGGUILE)
%rename("max-evaluations-set!") setMaxEvaluations;
%rename("lower-bound-set!") setLowerBound;
%rename("upper-bound-set!") setUpperBound;
#endif
public:
void setMaxEvaluations(Size evaluations);
void setLowerBound(Real lowerBound);
void setUpperBound(Real upperBound);
%extend {
#if defined(SWIGPYTHON)
Real solve(PyObject* function, Real xAccuracy,
Real guess, Real step) {
UnaryFunction f(function);
return self->solve(f, xAccuracy, guess, step);
}
Real solve(PyObject* function, Real xAccuracy,
Real guess, Real xMin, Real xMax) {
UnaryFunction f(function);
return self->solve(f, xAccuracy, guess, xMin, xMax);
}
#elif defined(SWIGRUBY)
Real solve(Real xAccuracy, Real guess, Real step) {
UnaryFunction f;
return self->solve(f, xAccuracy, guess, step);
}
Real solve(Real xAccuracy, Real guess,
Real xMin, Real xMax) {
UnaryFunction f;
return self->solve(f, xAccuracy, guess, xMin, xMax);
}
#elif defined(SWIGMZSCHEME)
Real solve(Scheme_Object* function, Real xAccuracy,
Real guess, Real step) {
UnaryFunction f(function);
return self->solve(f, xAccuracy, guess, step);
}
Real solve(Scheme_Object* function, Real xAccuracy,
Real guess, Real xMin, Real xMax) {
UnaryFunction f(function);
return self->solve(f, xAccuracy, guess, xMin, xMax);
}
#elif defined(SWIGGUILE)
Real solve(SCM function, Real xAccuracy,
Real guess, Real step) {
UnaryFunction f(function);
return self->solve(f, xAccuracy, guess, step);
}
Real solve(SCM function, Real xAccuracy,
Real guess, Real xMin, Real xMax) {
UnaryFunction f(function);
return self->solve(f, xAccuracy, guess, xMin, xMax);
}
#endif
}
};
%enddef
// Actual solvers
DeclareSolver(Brent);
DeclareSolver(Bisection);
DeclareSolver(FalsePosition);
DeclareSolver(Ridder);
DeclareSolver(Secant);
#if defined(SWIGPYTHON)
// these two need f.derivative()
DeclareSolver(Newton);
DeclareSolver(NewtonSafe);
#endif
// Optimizers
%{
using QuantLib::Constraint;
using QuantLib::BoundaryConstraint;
using QuantLib::NoConstraint;
using QuantLib::PositiveConstraint;
%}
class Constraint {
// prevent direct instantiation
private:
Constraint();
};
class BoundaryConstraint : public Constraint {
public:
BoundaryConstraint(Real lower, Real upper);
};
class NoConstraint : public Constraint {
public:
NoConstraint();
};
class PositiveConstraint : public Constraint {
public:
PositiveConstraint();
};
%{
using QuantLib::EndCriteria;
%}
class EndCriteria {
#if defined(SWIGRUBY)
%rename("setPositiveOptimization!") setPositiveOptimization;
#elif defined(SWIGMZSCHEME) || defined(SWIGGUILE)
%rename(call) operator();
%rename("positive-optimization-set!") setPositiveOptimization;
#elif defined(SWIGCSHARP) || defined(SWIGPERL)
%rename(call) operator();
#endif
public:
EndCriteria();
EndCriteria(Size maxIteration, Real epsilon);
void setPositiveOptimization();
bool operator()(Size iteration,
Real fold,
Real normgold,
Real fnew,
Real normgnew,
Real);
};
%{
using QuantLib::OptimizationMethod;
using QuantLib::ConjugateGradient;
using QuantLib::Simplex;
using QuantLib::SteepestDescent;
%}
class OptimizationMethod {
#if defined(SWIGRUBY)
%rename("initialValue=") setInitialValue;
%rename("endCriteria=") setEndCriteria;
#elif defined(SWIGMZSCHEME) || defined(SWIGGUILE)
%rename("initial-value-set!") setInitialValue;
%rename("end-criteria-set!") setEndCriteria;
#endif
private:
// prevent direct instantiation
OptimizationMethod();
public:
void setInitialValue(const Array&);
void setEndCriteria(const EndCriteria&);
};
class ConjugateGradient : public OptimizationMethod {
public:
ConjugateGradient();
};
class Simplex : public OptimizationMethod {
public:
Simplex(Real lambda, Real tol);
};
class SteepestDescent : public OptimizationMethod {
public:
SteepestDescent();
};
%{
using QuantLib::Problem;
%}
%inline %{
class Optimizer {};
%}
#if defined(SWIGPYTHON)
%extend Optimizer {
Array solve(PyObject* function, Constraint& c, OptimizationMethod& m) {
PyCostFunction f(function);
Problem p(f,c,m);
p.minimize();
return p.minimumValue();
}
}
#elif defined(SWIGRUBY)
%extend Optimizer {
Array solve(Constraint& c, OptimizationMethod& m) {
RubyCostFunction f;
Problem p(f,c,m);
p.minimize();
return p.minimumValue();
}
}
#elif defined(SWIGMZSCHEME)
%extend Optimizer {
Array solve(Scheme_Object* function, Constraint& c, OptimizationMethod& m) {
MzCostFunction f(function);
Problem p(f,c,m);
p.minimize();
return p.minimumValue();
}
}
#elif defined(SWIGGUILE)
%extend Optimizer {
Array solve(SCM function, Constraint& c, OptimizationMethod& m) {
GuileCostFunction f(function);
Problem p(f,c,m);
p.minimize();
return p.minimumValue();
}
}
#endif
#endif
|