File: randomnumbers.i

package info (click to toggle)
quantlib-swig 0.3.13-3
  • links: PTS
  • area: main
  • in suites: etch, etch-m68k
  • size: 43,120 kB
  • ctags: 74,378
  • sloc: cpp: 795,926; ansic: 103,715; ml: 39,516; cs: 24,631; java: 17,063; perl: 12,601; python: 6,752; lisp: 2,223; ruby: 1,103; sh: 458; makefile: 319
file content (249 lines) | stat: -rw-r--r-- 7,691 bytes parent folder | download | duplicates (3)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249

/*
 Copyright (C) 2003 Ferdinando Ametrano
 Copyright (C) 2000, 2001, 2002, 2003 RiskMap srl

 This file is part of QuantLib, a free-software/open-source library
 for financial quantitative analysts and developers - http://quantlib.org/

 QuantLib is free software: you can redistribute it and/or modify it under the
 terms of the QuantLib license.  You should have received a copy of the
 license along with this program; if not, please email quantlib-dev@lists.sf.net
 The license is also available online at http://quantlib.org/html/license.html

 This program is distributed in the hope that it will be useful, but WITHOUT
 ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or FITNESS
 FOR A PARTICULAR PURPOSE.  See the license for more details.
*/

#ifndef quantlib_random_numbers_i
#define quantlib_random_numbers_i

%include distributions.i

#if defined(SWIGRUBY)
#pragma SWIG nowarn=314
#endif

%{
using QuantLib::Sample;

using QuantLib::LecuyerUniformRng;
using QuantLib::KnuthUniformRng;
using QuantLib::MersenneTwisterUniformRng;

typedef QuantLib::PseudoRandom::urng_type UniformRandomGenerator;

using QuantLib::CLGaussianRng;
using QuantLib::BoxMullerGaussianRng;
using QuantLib::InverseCumulativeRng;

typedef QuantLib::PseudoRandom::rng_type GaussianRandomGenerator;

using QuantLib::RandomSequenceGenerator;

typedef QuantLib::PseudoRandom::ursg_type UniformRandomSequenceGenerator;

using QuantLib::HaltonRsg;
using QuantLib::SobolRsg;

typedef QuantLib::LowDiscrepancy::ursg_type
    UniformLowDiscrepancySequenceGenerator;

using QuantLib::InverseCumulativeRsg;

typedef QuantLib::PseudoRandom::rsg_type GaussianRandomSequenceGenerator;
typedef QuantLib::LowDiscrepancy::rsg_type
    GaussianLowDiscrepancySequenceGenerator;
%}

template <class T>
class Sample {
  private:
    Sample();
  public:
    %extend {
        T value() { return self->value; }
        Real weight() { return self->weight; }
    }
};

%template(SampleNumber) Sample<Real>;
%template(SampleArray) Sample<Array>;

/************* Uniform number generators *************/

class LecuyerUniformRng {
  public:
    LecuyerUniformRng(BigInteger seed=0);
    Sample<Real> next() const;
};

class KnuthUniformRng {
    KnuthUniformRng(BigInteger seed=0);
    Sample<Real> next() const;
};

class MersenneTwisterUniformRng {
    MersenneTwisterUniformRng(BigInteger seed=0);
    Sample<Real> next() const;
};

class UniformRandomGenerator {
  public:
    UniformRandomGenerator(BigInteger seed=0);
    Sample<Real> next() const;
};


/************* Gaussian number generators *************/

template<class RNG> class CLGaussianRng {
  public:
    CLGaussianRng(const RNG& rng);
    Sample<Real> next() const;
};

%template(CentralLimitLecuyerGaussianRng) CLGaussianRng<LecuyerUniformRng>;
%template(CentralLimitKnuthGaussianRng)   CLGaussianRng<KnuthUniformRng>;
%template(CentralLimitMersenneTwisterGaussianRng)
    CLGaussianRng<MersenneTwisterUniformRng>;

template<class RNG> class BoxMullerGaussianRng {
  public:
    BoxMullerGaussianRng(const RNG& rng);
    Sample<Real> next() const;
};

%template(BoxMullerLecuyerGaussianRng) BoxMullerGaussianRng<LecuyerUniformRng>;
%template(BoxMullerKnuthGaussianRng)   BoxMullerGaussianRng<KnuthUniformRng>;
%template(BoxMullerMersenneTwisterGaussianRng)
    BoxMullerGaussianRng<MersenneTwisterUniformRng>;

template<class RNG, class F> class InverseCumulativeRng {
  public:
    InverseCumulativeRng(const RNG& rng);
    Sample<Real> next() const;
};

%template(MoroInvCumulativeLecuyerGaussianRng)
    InverseCumulativeRng<LecuyerUniformRng,MoroInverseCumulativeNormal>;
%template(MoroInvCumulativeKnuthGaussianRng)
    InverseCumulativeRng<KnuthUniformRng,MoroInverseCumulativeNormal>;
%template(MoroInvCumulativeMersenneTwisterGaussianRng)
    InverseCumulativeRng<MersenneTwisterUniformRng,
                         MoroInverseCumulativeNormal>;

%template(InvCumulativeLecuyerGaussianRng)
    InverseCumulativeRng<LecuyerUniformRng,InverseCumulativeNormal>;
%template(InvCumulativeKnuthGaussianRng)
    InverseCumulativeRng<KnuthUniformRng,InverseCumulativeNormal>;
%template(InvCumulativeMersenneTwisterGaussianRng)
    InverseCumulativeRng<MersenneTwisterUniformRng,InverseCumulativeNormal>;

class GaussianRandomGenerator {
  public:
    GaussianRandomGenerator(const UniformRandomGenerator& rng);
    Sample<Real> next() const;
};

/************* Uniform sequence generators *************/


class HaltonRsg {
  public:
    HaltonRsg(Size dimensionality);
    const Sample<Array>& nextSequence() const;
    Size dimension() const;
};

class SobolRsg {
  public:
    SobolRsg(Size dimensionality, BigInteger seed=0);
    const Sample<Array>& nextSequence() const;
    Size dimension() const;
};

template<class RNG> class RandomSequenceGenerator {
  public:
    RandomSequenceGenerator(Size dimensionality,
                            const RNG& rng);
    const Sample<Array>& nextSequence() const;
    Size dimension() const;
};

%template(LecuyerUniformRsg)
    RandomSequenceGenerator<LecuyerUniformRng>;
%template(KnuthUniformRsg)
    RandomSequenceGenerator<KnuthUniformRng>;
%template(MersenneTwisterUniformRsg)
    RandomSequenceGenerator<MersenneTwisterUniformRng>;

class UniformRandomSequenceGenerator {
  public:
    UniformRandomSequenceGenerator(Size dimensionality,
                                   const UniformRandomGenerator& rng);
    const Sample<Array>& nextSequence() const;
    Size dimension() const;
};

class UniformLowDiscrepancySequenceGenerator {
  public:
    UniformLowDiscrepancySequenceGenerator(Size dimensionality);
    const Sample<Array>& nextSequence() const;
    Size dimension() const;
};

/************* Gaussian sequence generators *************/

template <class U, class I>
class InverseCumulativeRsg {
  public:
    InverseCumulativeRsg(const U& uniformSequenceGenerator);
    const Sample<Array>& nextSequence() const;
    Size dimension() const;
};


%template(MoroInvCumulativeLecuyerGaussianRsg)
    InverseCumulativeRsg<RandomSequenceGenerator<LecuyerUniformRng>,
                         MoroInverseCumulativeNormal>;
%template(MoroInvCumulativeKnuthGaussianRsg)
    InverseCumulativeRsg<RandomSequenceGenerator<KnuthUniformRng>,
                         MoroInverseCumulativeNormal>;
%template(MoroInvCumulativeMersenneTwisterGaussianRsg)
    InverseCumulativeRsg<RandomSequenceGenerator<MersenneTwisterUniformRng>,
                         MoroInverseCumulativeNormal>;
%template(MoroInvCumulativeHaltonGaussianRsg)
    InverseCumulativeRsg<HaltonRsg,MoroInverseCumulativeNormal>;

%template(InvCumulativeLecuyerGaussianRsg)
    InverseCumulativeRsg<RandomSequenceGenerator<LecuyerUniformRng>,
                         InverseCumulativeNormal>;
%template(InvCumulativeKnuthGaussianRsg)
    InverseCumulativeRsg<RandomSequenceGenerator<KnuthUniformRng>,
                         InverseCumulativeNormal>;
%template(InvCumulativeMersenneTwisterGaussianRsg)
    InverseCumulativeRsg<RandomSequenceGenerator<MersenneTwisterUniformRng>,
                         InverseCumulativeNormal>;
%template(InvCumulativeHaltonGaussianRsg)
    InverseCumulativeRsg<HaltonRsg,InverseCumulativeNormal>;

class GaussianRandomSequenceGenerator {
  public:
    GaussianRandomSequenceGenerator(
        const UniformRandomSequenceGenerator& uniformSequenceGenerator);
    const Sample<Array>& nextSequence() const;
    Size dimension() const;
};

class GaussianLowDiscrepancySequenceGenerator {
  public:
    GaussianLowDiscrepancySequenceGenerator(
        const UniformLowDiscrepancySequenceGenerator& u);
    const Sample<Array>& nextSequence() const;
    Size dimension() const;
};


#endif