1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249
|
/*
Copyright (C) 2003 Ferdinando Ametrano
Copyright (C) 2000, 2001, 2002, 2003 RiskMap srl
This file is part of QuantLib, a free-software/open-source library
for financial quantitative analysts and developers - http://quantlib.org/
QuantLib is free software: you can redistribute it and/or modify it under the
terms of the QuantLib license. You should have received a copy of the
license along with this program; if not, please email quantlib-dev@lists.sf.net
The license is also available online at http://quantlib.org/html/license.html
This program is distributed in the hope that it will be useful, but WITHOUT
ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or FITNESS
FOR A PARTICULAR PURPOSE. See the license for more details.
*/
#ifndef quantlib_random_numbers_i
#define quantlib_random_numbers_i
%include distributions.i
#if defined(SWIGRUBY)
#pragma SWIG nowarn=314
#endif
%{
using QuantLib::Sample;
using QuantLib::LecuyerUniformRng;
using QuantLib::KnuthUniformRng;
using QuantLib::MersenneTwisterUniformRng;
typedef QuantLib::PseudoRandom::urng_type UniformRandomGenerator;
using QuantLib::CLGaussianRng;
using QuantLib::BoxMullerGaussianRng;
using QuantLib::InverseCumulativeRng;
typedef QuantLib::PseudoRandom::rng_type GaussianRandomGenerator;
using QuantLib::RandomSequenceGenerator;
typedef QuantLib::PseudoRandom::ursg_type UniformRandomSequenceGenerator;
using QuantLib::HaltonRsg;
using QuantLib::SobolRsg;
typedef QuantLib::LowDiscrepancy::ursg_type
UniformLowDiscrepancySequenceGenerator;
using QuantLib::InverseCumulativeRsg;
typedef QuantLib::PseudoRandom::rsg_type GaussianRandomSequenceGenerator;
typedef QuantLib::LowDiscrepancy::rsg_type
GaussianLowDiscrepancySequenceGenerator;
%}
template <class T>
class Sample {
private:
Sample();
public:
%extend {
T value() { return self->value; }
Real weight() { return self->weight; }
}
};
%template(SampleNumber) Sample<Real>;
%template(SampleArray) Sample<Array>;
/************* Uniform number generators *************/
class LecuyerUniformRng {
public:
LecuyerUniformRng(BigInteger seed=0);
Sample<Real> next() const;
};
class KnuthUniformRng {
KnuthUniformRng(BigInteger seed=0);
Sample<Real> next() const;
};
class MersenneTwisterUniformRng {
MersenneTwisterUniformRng(BigInteger seed=0);
Sample<Real> next() const;
};
class UniformRandomGenerator {
public:
UniformRandomGenerator(BigInteger seed=0);
Sample<Real> next() const;
};
/************* Gaussian number generators *************/
template<class RNG> class CLGaussianRng {
public:
CLGaussianRng(const RNG& rng);
Sample<Real> next() const;
};
%template(CentralLimitLecuyerGaussianRng) CLGaussianRng<LecuyerUniformRng>;
%template(CentralLimitKnuthGaussianRng) CLGaussianRng<KnuthUniformRng>;
%template(CentralLimitMersenneTwisterGaussianRng)
CLGaussianRng<MersenneTwisterUniformRng>;
template<class RNG> class BoxMullerGaussianRng {
public:
BoxMullerGaussianRng(const RNG& rng);
Sample<Real> next() const;
};
%template(BoxMullerLecuyerGaussianRng) BoxMullerGaussianRng<LecuyerUniformRng>;
%template(BoxMullerKnuthGaussianRng) BoxMullerGaussianRng<KnuthUniformRng>;
%template(BoxMullerMersenneTwisterGaussianRng)
BoxMullerGaussianRng<MersenneTwisterUniformRng>;
template<class RNG, class F> class InverseCumulativeRng {
public:
InverseCumulativeRng(const RNG& rng);
Sample<Real> next() const;
};
%template(MoroInvCumulativeLecuyerGaussianRng)
InverseCumulativeRng<LecuyerUniformRng,MoroInverseCumulativeNormal>;
%template(MoroInvCumulativeKnuthGaussianRng)
InverseCumulativeRng<KnuthUniformRng,MoroInverseCumulativeNormal>;
%template(MoroInvCumulativeMersenneTwisterGaussianRng)
InverseCumulativeRng<MersenneTwisterUniformRng,
MoroInverseCumulativeNormal>;
%template(InvCumulativeLecuyerGaussianRng)
InverseCumulativeRng<LecuyerUniformRng,InverseCumulativeNormal>;
%template(InvCumulativeKnuthGaussianRng)
InverseCumulativeRng<KnuthUniformRng,InverseCumulativeNormal>;
%template(InvCumulativeMersenneTwisterGaussianRng)
InverseCumulativeRng<MersenneTwisterUniformRng,InverseCumulativeNormal>;
class GaussianRandomGenerator {
public:
GaussianRandomGenerator(const UniformRandomGenerator& rng);
Sample<Real> next() const;
};
/************* Uniform sequence generators *************/
class HaltonRsg {
public:
HaltonRsg(Size dimensionality);
const Sample<Array>& nextSequence() const;
Size dimension() const;
};
class SobolRsg {
public:
SobolRsg(Size dimensionality, BigInteger seed=0);
const Sample<Array>& nextSequence() const;
Size dimension() const;
};
template<class RNG> class RandomSequenceGenerator {
public:
RandomSequenceGenerator(Size dimensionality,
const RNG& rng);
const Sample<Array>& nextSequence() const;
Size dimension() const;
};
%template(LecuyerUniformRsg)
RandomSequenceGenerator<LecuyerUniformRng>;
%template(KnuthUniformRsg)
RandomSequenceGenerator<KnuthUniformRng>;
%template(MersenneTwisterUniformRsg)
RandomSequenceGenerator<MersenneTwisterUniformRng>;
class UniformRandomSequenceGenerator {
public:
UniformRandomSequenceGenerator(Size dimensionality,
const UniformRandomGenerator& rng);
const Sample<Array>& nextSequence() const;
Size dimension() const;
};
class UniformLowDiscrepancySequenceGenerator {
public:
UniformLowDiscrepancySequenceGenerator(Size dimensionality);
const Sample<Array>& nextSequence() const;
Size dimension() const;
};
/************* Gaussian sequence generators *************/
template <class U, class I>
class InverseCumulativeRsg {
public:
InverseCumulativeRsg(const U& uniformSequenceGenerator);
const Sample<Array>& nextSequence() const;
Size dimension() const;
};
%template(MoroInvCumulativeLecuyerGaussianRsg)
InverseCumulativeRsg<RandomSequenceGenerator<LecuyerUniformRng>,
MoroInverseCumulativeNormal>;
%template(MoroInvCumulativeKnuthGaussianRsg)
InverseCumulativeRsg<RandomSequenceGenerator<KnuthUniformRng>,
MoroInverseCumulativeNormal>;
%template(MoroInvCumulativeMersenneTwisterGaussianRsg)
InverseCumulativeRsg<RandomSequenceGenerator<MersenneTwisterUniformRng>,
MoroInverseCumulativeNormal>;
%template(MoroInvCumulativeHaltonGaussianRsg)
InverseCumulativeRsg<HaltonRsg,MoroInverseCumulativeNormal>;
%template(InvCumulativeLecuyerGaussianRsg)
InverseCumulativeRsg<RandomSequenceGenerator<LecuyerUniformRng>,
InverseCumulativeNormal>;
%template(InvCumulativeKnuthGaussianRsg)
InverseCumulativeRsg<RandomSequenceGenerator<KnuthUniformRng>,
InverseCumulativeNormal>;
%template(InvCumulativeMersenneTwisterGaussianRsg)
InverseCumulativeRsg<RandomSequenceGenerator<MersenneTwisterUniformRng>,
InverseCumulativeNormal>;
%template(InvCumulativeHaltonGaussianRsg)
InverseCumulativeRsg<HaltonRsg,InverseCumulativeNormal>;
class GaussianRandomSequenceGenerator {
public:
GaussianRandomSequenceGenerator(
const UniformRandomSequenceGenerator& uniformSequenceGenerator);
const Sample<Array>& nextSequence() const;
Size dimension() const;
};
class GaussianLowDiscrepancySequenceGenerator {
public:
GaussianLowDiscrepancySequenceGenerator(
const UniformLowDiscrepancySequenceGenerator& u);
const Sample<Array>& nextSequence() const;
Size dimension() const;
};
#endif
|