File: bermudan-swaption.py

package info (click to toggle)
quantlib-swig 0.9.0-1
  • links: PTS
  • area: main
  • in suites: lenny
  • size: 58,200 kB
  • ctags: 105,353
  • sloc: cpp: 1,047,001; ansic: 133,430; ml: 54,990; cs: 34,216; java: 23,659; perl: 17,882; python: 8,891; lisp: 2,337; ruby: 1,140; sh: 458; makefile: 355
file content (223 lines) | stat: -rw-r--r-- 7,872 bytes parent folder | download | duplicates (3)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223

# Copyright (C) 2004, 2005, 2006, 2007 StatPro Italia srl
#
# This file is part of QuantLib, a free-software/open-source library
# for financial quantitative analysts and developers - http://quantlib.org/
#
# QuantLib is free software: you can redistribute it and/or modify it under the
# terms of the QuantLib license.  You should have received a copy of the
# license along with this program; if not, please email
# <quantlib-dev@lists.sf.net>. The license is also available online at
# <http://quantlib.org/license.shtml>.
#
# This program is distributed in the hope that it will be useful, but WITHOUT
# ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or FITNESS
# FOR A PARTICULAR PURPOSE.  See the license for more details.

from QuantLib import *

swaptionVols = [ # maturity,          length,             volatility
                 (Period(1, Years), Period(5, Years), 0.1148),
                 (Period(2, Years), Period(4, Years), 0.1108),
                 (Period(3, Years), Period(3, Years), 0.1070),
                 (Period(4, Years), Period(2, Years), 0.1021),
                 (Period(5, Years), Period(1, Years), 0.1000) ]

def formatVol(v, digits = 2):
    format = '%%.%df %%%%' % digits
    return format % (v * 100)

def formatPrice(p, digits = 2):
    format = '%%.%df' % digits
    return format % p

def calibrate(model, helpers, l, name):

    format = '%12s |%12s |%12s |%12s |%12s'
    header = format % ('maturity','length','volatility','implied','error')
    rule = '-' * len(header)
    dblrule = '=' * len(header)

    print
    print dblrule
    print name
    print rule

    method = Simplex(l);
    model.calibrate(helpers, method, EndCriteria(1000, 250, 1e-7, 1e-7, 1e-7))

    print 'Parameters: %s' % model.params()
    print rule

    print header
    print rule

    totalError = 0.0
    for swaption, helper in zip(swaptionVols, helpers):
        maturity, length, vol = swaption
        NPV = helper.modelValue()
        implied = helper.impliedVolatility(NPV, 1.0e-4, 1000, 0.05, 0.50)
        error = implied - vol
        totalError += abs(error)
        print format % (maturity, length,
                        formatVol(vol,4), formatVol(implied,4),
                        formatVol(error,4))
    averageError = totalError/len(helpers)

    print rule
    format = '%%%ds' % len(header)
    print format % ('Average error: ' + formatVol(averageError,4))
    print dblrule

todaysDate = Date(15,February,2002)
Settings.instance().evaluationDate = todaysDate
calendar = TARGET()
settlementDate = Date(19,February,2002);

# flat yield term structure impling 1x5 swap at 5%
rate = QuoteHandle(SimpleQuote(0.04875825))
termStructure = YieldTermStructureHandle(
    FlatForward(settlementDate,rate,Actual365Fixed()))

# define the ATM/OTM/ITM swaps

swapEngine = DiscountingSwapEngine(termStructure)

fixedLegFrequency = Annual
fixedLegTenor = Period(1,Years)
fixedLegConvention = Unadjusted
floatingLegConvention = ModifiedFollowing
fixedLegDayCounter = Thirty360(Thirty360.European);
floatingLegFrequency = Semiannual
floatingLegTenor = Period(6,Months)

payFixed = VanillaSwap.Payer
fixingDays = 2
index = Euribor6M(termStructure)
floatingLegDayCounter = index.dayCounter()

swapStart = calendar.advance(settlementDate,1,Years,floatingLegConvention)
swapEnd = calendar.advance(swapStart,5,Years,floatingLegConvention)

fixedSchedule = Schedule(swapStart, swapEnd,
                         fixedLegTenor, calendar,
                         fixedLegConvention, fixedLegConvention,
                         DateGeneration.Forward, False)
floatingSchedule = Schedule(swapStart, swapEnd,
                            floatingLegTenor, calendar,
                            floatingLegConvention, floatingLegConvention,
                            DateGeneration.Forward, False)

dummy = VanillaSwap(payFixed, 100.0,
                    fixedSchedule, 0.0, fixedLegDayCounter,
                    floatingSchedule, index, 0.0,
                    floatingLegDayCounter)
dummy.setPricingEngine(swapEngine)
atmRate = dummy.fairRate()

atmSwap = VanillaSwap(payFixed, 1000.0,
                      fixedSchedule, atmRate, fixedLegDayCounter,
                      floatingSchedule, index, 0.0,
                      floatingLegDayCounter)
otmSwap = VanillaSwap(payFixed, 1000.0,
                      fixedSchedule, atmRate*1.2, fixedLegDayCounter,
                      floatingSchedule, index, 0.0,
                      floatingLegDayCounter)
itmSwap = VanillaSwap(payFixed, 1000.0,
                      fixedSchedule, atmRate*0.8, fixedLegDayCounter,
                      floatingSchedule, index, 0.0,
                      floatingLegDayCounter)
atmSwap.setPricingEngine(swapEngine)
otmSwap.setPricingEngine(swapEngine)
itmSwap.setPricingEngine(swapEngine)

helpers = [ SwaptionHelper(maturity, length,
                           QuoteHandle(SimpleQuote(vol)),
                           index, index.tenor(), index.dayCounter(),
                           index.dayCounter(), termStructure)
            for maturity, length, vol in swaptionVols ]

times = {}
for h in helpers:
    for t in h.times():
        times[t] = 1
times = times.keys()
times.sort()

grid = TimeGrid(times, 30)

G2model = G2(termStructure)
HWmodel = HullWhite(termStructure)
HWmodel2 = HullWhite(termStructure)
BKmodel = BlackKarasinski(termStructure)

print "Calibrating..."

for h in helpers:
    h.setPricingEngine(G2SwaptionEngine(G2model,6.0,16))
calibrate(G2model, helpers, 0.05, "G2 (analytic formulae)")

for h in helpers:
    h.setPricingEngine(JamshidianSwaptionEngine(HWmodel))
calibrate(HWmodel, helpers, 0.05, "Hull-White (analytic formulae)")

for h in helpers:
    h.setPricingEngine(TreeSwaptionEngine(HWmodel2,grid))
calibrate(HWmodel2, helpers, 0.05, "Hull-White (numerical calibration)")

for h in helpers:
    h.setPricingEngine(TreeSwaptionEngine(BKmodel,grid))
calibrate(BKmodel, helpers, 0.05, "Black-Karasinski (numerical calibration)")


# price Bermudan swaptions on defined swaps

bermudanDates = [ d for d in fixedSchedule ][:-1]
exercise = BermudanExercise(bermudanDates)

format = '%17s |%17s |%17s |%17s'
header = format % ('model', 'in-the-money', 'at-the-money', 'out-of-the-money')
rule = '-' * len(header)
dblrule = '=' * len(header)

print
print dblrule
print 'Pricing Bermudan swaptions...'
print rule
print header
print rule

atmSwaption = Swaption(atmSwap, exercise)
otmSwaption = Swaption(otmSwap, exercise)
itmSwaption = Swaption(itmSwap, exercise)

atmSwaption.setPricingEngine(TreeSwaptionEngine(G2model, 50))
otmSwaption.setPricingEngine(TreeSwaptionEngine(G2model, 50))
itmSwaption.setPricingEngine(TreeSwaptionEngine(G2model, 50))

print format % ('G2 analytic', formatPrice(itmSwaption.NPV()),
                formatPrice(atmSwaption.NPV()), formatPrice(otmSwaption.NPV()))

atmSwaption.setPricingEngine(TreeSwaptionEngine(HWmodel, 50))
otmSwaption.setPricingEngine(TreeSwaptionEngine(HWmodel, 50))
itmSwaption.setPricingEngine(TreeSwaptionEngine(HWmodel, 50))

print format % ('HW analytic', formatPrice(itmSwaption.NPV()),
                formatPrice(atmSwaption.NPV()), formatPrice(otmSwaption.NPV()))

atmSwaption.setPricingEngine(TreeSwaptionEngine(HWmodel2, 50))
otmSwaption.setPricingEngine(TreeSwaptionEngine(HWmodel2, 50))
itmSwaption.setPricingEngine(TreeSwaptionEngine(HWmodel2, 50))

print format % ('HW numerical', formatPrice(itmSwaption.NPV()),
                formatPrice(atmSwaption.NPV()), formatPrice(otmSwaption.NPV()))

atmSwaption.setPricingEngine(TreeSwaptionEngine(BKmodel, 50))
otmSwaption.setPricingEngine(TreeSwaptionEngine(BKmodel, 50))
itmSwaption.setPricingEngine(TreeSwaptionEngine(BKmodel, 50))

print format % ('BK numerical', formatPrice(itmSwaption.NPV()),
                formatPrice(atmSwaption.NPV()), formatPrice(otmSwaption.NPV()))

print dblrule