1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78
|
//------------------------------------------------------------------------------
// <auto-generated />
//
// This file was automatically generated by SWIG (http://www.swig.org).
// Version 3.0.12
//
// Do not make changes to this file unless you know what you are doing--modify
// the SWIG interface file instead.
//------------------------------------------------------------------------------
namespace QuantLib {
public class GaussianSimulatedAnnealing : OptimizationMethod {
private global::System.Runtime.InteropServices.HandleRef swigCPtr;
internal GaussianSimulatedAnnealing(global::System.IntPtr cPtr, bool cMemoryOwn) : base(NQuantLibcPINVOKE.GaussianSimulatedAnnealing_SWIGUpcast(cPtr), cMemoryOwn) {
swigCPtr = new global::System.Runtime.InteropServices.HandleRef(this, cPtr);
}
internal static global::System.Runtime.InteropServices.HandleRef getCPtr(GaussianSimulatedAnnealing obj) {
return (obj == null) ? new global::System.Runtime.InteropServices.HandleRef(null, global::System.IntPtr.Zero) : obj.swigCPtr;
}
~GaussianSimulatedAnnealing() {
Dispose();
}
public override void Dispose() {
lock(this) {
if (swigCPtr.Handle != global::System.IntPtr.Zero) {
if (swigCMemOwn) {
swigCMemOwn = false;
NQuantLibcPINVOKE.delete_GaussianSimulatedAnnealing(swigCPtr);
}
swigCPtr = new global::System.Runtime.InteropServices.HandleRef(null, global::System.IntPtr.Zero);
}
global::System.GC.SuppressFinalize(this);
base.Dispose();
}
}
public GaussianSimulatedAnnealing(SamplerGaussian sampler, ProbabilityBoltzmannDownhill probability, TemperatureExponential temperature, ReannealingTrivial reannealing, double startTemperature, double endTemperature, uint reAnnealSteps, GaussianSimulatedAnnealing.ResetScheme resetScheme, uint resetSteps) : this(NQuantLibcPINVOKE.new_GaussianSimulatedAnnealing__SWIG_0(SamplerGaussian.getCPtr(sampler), ProbabilityBoltzmannDownhill.getCPtr(probability), TemperatureExponential.getCPtr(temperature), ReannealingTrivial.getCPtr(reannealing), startTemperature, endTemperature, reAnnealSteps, (int)resetScheme, resetSteps), true) {
if (NQuantLibcPINVOKE.SWIGPendingException.Pending) throw NQuantLibcPINVOKE.SWIGPendingException.Retrieve();
}
public GaussianSimulatedAnnealing(SamplerGaussian sampler, ProbabilityBoltzmannDownhill probability, TemperatureExponential temperature, ReannealingTrivial reannealing, double startTemperature, double endTemperature, uint reAnnealSteps, GaussianSimulatedAnnealing.ResetScheme resetScheme) : this(NQuantLibcPINVOKE.new_GaussianSimulatedAnnealing__SWIG_1(SamplerGaussian.getCPtr(sampler), ProbabilityBoltzmannDownhill.getCPtr(probability), TemperatureExponential.getCPtr(temperature), ReannealingTrivial.getCPtr(reannealing), startTemperature, endTemperature, reAnnealSteps, (int)resetScheme), true) {
if (NQuantLibcPINVOKE.SWIGPendingException.Pending) throw NQuantLibcPINVOKE.SWIGPendingException.Retrieve();
}
public GaussianSimulatedAnnealing(SamplerGaussian sampler, ProbabilityBoltzmannDownhill probability, TemperatureExponential temperature, ReannealingTrivial reannealing, double startTemperature, double endTemperature, uint reAnnealSteps) : this(NQuantLibcPINVOKE.new_GaussianSimulatedAnnealing__SWIG_2(SamplerGaussian.getCPtr(sampler), ProbabilityBoltzmannDownhill.getCPtr(probability), TemperatureExponential.getCPtr(temperature), ReannealingTrivial.getCPtr(reannealing), startTemperature, endTemperature, reAnnealSteps), true) {
if (NQuantLibcPINVOKE.SWIGPendingException.Pending) throw NQuantLibcPINVOKE.SWIGPendingException.Retrieve();
}
public GaussianSimulatedAnnealing(SamplerGaussian sampler, ProbabilityBoltzmannDownhill probability, TemperatureExponential temperature, ReannealingTrivial reannealing, double startTemperature, double endTemperature) : this(NQuantLibcPINVOKE.new_GaussianSimulatedAnnealing__SWIG_3(SamplerGaussian.getCPtr(sampler), ProbabilityBoltzmannDownhill.getCPtr(probability), TemperatureExponential.getCPtr(temperature), ReannealingTrivial.getCPtr(reannealing), startTemperature, endTemperature), true) {
if (NQuantLibcPINVOKE.SWIGPendingException.Pending) throw NQuantLibcPINVOKE.SWIGPendingException.Retrieve();
}
public GaussianSimulatedAnnealing(SamplerGaussian sampler, ProbabilityBoltzmannDownhill probability, TemperatureExponential temperature, ReannealingTrivial reannealing, double startTemperature) : this(NQuantLibcPINVOKE.new_GaussianSimulatedAnnealing__SWIG_4(SamplerGaussian.getCPtr(sampler), ProbabilityBoltzmannDownhill.getCPtr(probability), TemperatureExponential.getCPtr(temperature), ReannealingTrivial.getCPtr(reannealing), startTemperature), true) {
if (NQuantLibcPINVOKE.SWIGPendingException.Pending) throw NQuantLibcPINVOKE.SWIGPendingException.Retrieve();
}
public GaussianSimulatedAnnealing(SamplerGaussian sampler, ProbabilityBoltzmannDownhill probability, TemperatureExponential temperature, ReannealingTrivial reannealing) : this(NQuantLibcPINVOKE.new_GaussianSimulatedAnnealing__SWIG_5(SamplerGaussian.getCPtr(sampler), ProbabilityBoltzmannDownhill.getCPtr(probability), TemperatureExponential.getCPtr(temperature), ReannealingTrivial.getCPtr(reannealing)), true) {
if (NQuantLibcPINVOKE.SWIGPendingException.Pending) throw NQuantLibcPINVOKE.SWIGPendingException.Retrieve();
}
public GaussianSimulatedAnnealing(SamplerGaussian sampler, ProbabilityBoltzmannDownhill probability, TemperatureExponential temperature) : this(NQuantLibcPINVOKE.new_GaussianSimulatedAnnealing__SWIG_6(SamplerGaussian.getCPtr(sampler), ProbabilityBoltzmannDownhill.getCPtr(probability), TemperatureExponential.getCPtr(temperature)), true) {
if (NQuantLibcPINVOKE.SWIGPendingException.Pending) throw NQuantLibcPINVOKE.SWIGPendingException.Retrieve();
}
public enum ResetScheme {
NoResetScheme,
ResetToBestPoint,
ResetToOrigin
}
}
}
|