File: test_futures.py

package info (click to toggle)
quantlib-swig 1.40-3
  • links: PTS, VCS
  • area: main
  • in suites: forky
  • size: 2,276 kB
  • sloc: python: 6,024; java: 1,552; cs: 774; makefile: 309; sh: 22
file content (135 lines) | stat: -rw-r--r-- 7,491 bytes parent folder | download | duplicates (2)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
"""
 Copyright (C) 2025 Hiroto Ogawa

 This file is part of QuantLib, a free-software/open-source library
 for financial quantitative analysts and developers - http://quantlib.org/

 QuantLib is free software: you can redistribute it and/or modify it
 under the terms of the QuantLib license.  You should have received a
 copy of the license along with this program; if not, please email
 <quantlib-dev@lists.sf.net>. The license is also available online at
 <https://www.quantlib.org/license.shtml>.

 This program is distributed in the hope that it will be useful, but WITHOUT
 ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or FITNESS
 FOR A PARTICULAR PURPOSE.  See the license for more details.
"""
import unittest
import math
import QuantLib as ql

LAG = 0
DC = ql.ActualActual(ql.ActualActual.ISDA)
CAL = ql.NullCalendar()

def flat_rate(rate):
    return ql.FlatForward(
        LAG, CAL, ql.makeQuoteHandle(rate), DC)

class PerpetualFuturesTest(unittest.TestCase):
    def test_perpetual_futures(self):
        """ Testing PerpetualFutures pricing by discounted cashflow method against analytic formulae. """
        val_date = ql.Date(20, 6, 2025)
        ql.Settings.instance().evaluationDate = val_date

        test_dicts = [
            # Discrete time
            {"payoff": ql.PerpetualFutures.Linear, "funding": ql.PerpetualFutures.FundingWithPreviousSpot,
             "freq": ql.Period(3, ql.Months), "spot": 10000., "domRate": 0.04, "btcYield": 0.02,
             "fundingRate": 0.01, "rateDiff": 0.005, "tol": 1.e-6},
            {"payoff": ql.PerpetualFutures.Linear, "funding": ql.PerpetualFutures.FundingWithCurrentSpot,
             "freq": ql.Period(3, ql.Months), "spot": 10000., "domRate": 0.04, "btcYield": 0.02,
             "fundingRate": 0.01, "rateDiff": 0.005, "tol": 1.e-6},
            {"payoff": ql.PerpetualFutures.Inverse, "funding": ql.PerpetualFutures.FundingWithPreviousSpot,
             "freq": ql.Period(3, ql.Months), "spot": 10000., "domRate": 0.04, "btcYield": 0.02,
             "fundingRate": 0.01, "rateDiff": 0.005, "tol": 1.e-6},
            {"payoff": ql.PerpetualFutures.Inverse, "funding": ql.PerpetualFutures.FundingWithCurrentSpot,
             "freq": ql.Period(3, ql.Months), "spot": 10000., "domRate": 0.04, "btcYield": 0.02,
             "fundingRate": 0.01, "rateDiff": 0.005, "tol": 1.e-6},
             # Continuous time
            {"payoff": ql.PerpetualFutures.Linear, "funding": ql.PerpetualFutures.FundingWithPreviousSpot,
             "freq": ql.Period(0, ql.Months), "spot": 10000., "domRate": 0.04, "btcYield": 0.02,
             "fundingRate": 0.2, "rateDiff": 0.005, "tol": 1.e-6},
            {"payoff": ql.PerpetualFutures.Inverse, "funding": ql.PerpetualFutures.FundingWithPreviousSpot,
             "freq": ql.Period(0, ql.Months), "spot": 10000., "domRate": 0.04, "btcYield": 0.02,
             "fundingRate": 0.2, "rateDiff": 0.005, "tol": 1.e-6},
        ]

        for d in test_dicts:
            pf = ql.PerpetualFutures(d["payoff"], d["funding"], d["freq"], CAL, DC)
            domYC = ql.YieldTermStructureHandle(flat_rate(d["domRate"]))
            btcYC = ql.YieldTermStructureHandle(flat_rate(d["btcYield"]))
            spot = ql.QuoteHandle(ql.SimpleQuote(d["spot"]))

            fundingTimes = [0.0]
            fundingRates = [d["fundingRate"]]
            ir_diffs = [d["rateDiff"]]
            engine = ql.DiscountingPerpetualFuturesEngine(domYC, btcYC, spot, fundingTimes, fundingRates, ir_diffs,
                                                      ql.DiscountingPerpetualFuturesEngine.PiecewiseConstant)
            # pricing
            pf.setPricingEngine(engine)
            npv = pf.NPV()

            # analytic price
            # for details, refer to
            # Perpetual Futures Pricing, Damien Ackerer, Julien Hugonnier, Urban Jermann, 2024
            # https://finance.wharton.upenn.edu/~jermann/AHJ-main-10.pdf
            period = d["freq"]
            length = float(period.length())
            unit = period.units()
            if unit == ql.Years:
                dt = length
            elif unit == ql.Months:
                dt = length / 12.
            elif unit == ql.Weeks:
                dt = length * 7. / 365.
            elif unit == ql.Days:
                dt = length / 365.
            elif unit == ql.Hours:
                dt = length / 365. / 24.
            elif unit == ql.Minutes:
                dt = length / 365. / 24. / 60.
            elif unit == ql.Seconds:
                dt = length / 365. / 24. / 60. / 60.
            else:
                raise RuntimeError("unknown funding frequency unit: " + str(unit))
            
            # Discrete time
            if length > 0:
                if d["payoff"] == ql.PerpetualFutures.Linear:
                    if d["funding"] == ql.PerpetualFutures.FundingWithPreviousSpot:
                        # Equation (12) in the above paper
                        expected = (
                            d["spot"] * (d["fundingRate"] - d["rateDiff"]) * math.exp(d["btcYield"] * dt) /
                            (math.exp(d["btcYield"] * dt) - math.exp(d["domRate"] * dt) + d["fundingRate"] * math.exp(d["btcYield"] * dt)))
                    elif d["funding"] == ql.PerpetualFutures.FundingWithCurrentSpot:
                        # at the end of "3 Perpetual futures pricing" in the above paper
                        expected = (
                            d["spot"] * (d["fundingRate"] - d["rateDiff"]) * math.exp(d["domRate"] * dt) /
                            (math.exp(d["btcYield"] * dt) - math.exp(d["domRate"] * dt) + d["fundingRate"] * math.exp(d["domRate"] * dt)))
                elif d["payoff"] == ql.PerpetualFutures.Inverse:
                    if d["funding"] == ql.PerpetualFutures.FundingWithPreviousSpot:
                        # "Proposition 2" in the above paper
                        expected = (
                            d["spot"] *
                            (math.exp(d["domRate"] * dt) - math.exp(d["btcYield"] * dt) + d["fundingRate"] * math.exp(d["domRate"] * dt)) /
                            (d["fundingRate"] - d["rateDiff"]) / math.exp(d["domRate"] * dt))
                    elif d["funding"] == ql.PerpetualFutures.FundingWithCurrentSpot:
                        expected = (
                        d["spot"] *
                        (math.exp(d["domRate"] * dt) - math.exp(d["btcYield"] * dt) + d["fundingRate"] * math.exp(d["btcYield"] * dt)) /
                        (d["fundingRate"] - d["rateDiff"]) / math.exp(d["btcYield"] * dt))
            else:
                # Continuous time
                if d["payoff"] == ql.PerpetualFutures.Linear:
                    # "Proposition 3" in the above paper
                    expected = d["spot"] * (d["fundingRate"] - d["rateDiff"]) / (d["btcYield"] - d["domRate"] + d["fundingRate"])
                elif d["payoff"] == ql.PerpetualFutures.Inverse:
                    # "Proposition 4" in the above paper
                    expected = d["spot"] * (d["domRate"] - d["btcYield"] + d["fundingRate"]) / (d["fundingRate"] - d["rateDiff"])
            failed_msg = f"Perpetual future price {npv} differs from analytic price {expected} with relative tolerance {d['tol']}\n"
            self.assertAlmostEqual(npv, expected, delta=d["tol"] * expected, msg=failed_msg)

if __name__ == '__main__':
    print("testing QuantLib", ql.__version__)
    unittest.main(verbosity=2)