1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399
|
/*
Copyright (C) 2000, 2001, 2002, 2003 RiskMap srl
Copyright (C) 2002, 2003 Ferdinando Ametrano
Copyright (C) 2003, 2004, 2008 StatPro Italia srl
Copyright (C) 2005 Dominic Thuillier
Copyright (C) 2018, 2020 Matthias Lungwitz
This file is part of QuantLib, a free-software/open-source library
for financial quantitative analysts and developers - http://quantlib.org/
QuantLib is free software: you can redistribute it and/or modify it
under the terms of the QuantLib license. You should have received a
copy of the license along with this program; if not, please email
<quantlib-dev@lists.sf.net>. The license is also available online at
<https://www.quantlib.org/license.shtml>.
This program is distributed in the hope that it will be useful, but WITHOUT
ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or FITNESS
FOR A PARTICULAR PURPOSE. See the license for more details.
*/
#ifndef quantlib_interpolation_i
#define quantlib_interpolation_i
%include linearalgebra.i
%include optimizers.i
%{
// safe versions which copy their arguments
template <class I>
class SafeInterpolation {
public:
SafeInterpolation(const Array& x, const Array& y)
: x_(x), y_(y), f_(x_.begin(),x_.end(),y_.begin()) {}
Real operator()(Real x, bool allowExtrapolation=false) {
return f_(x, allowExtrapolation);
}
Array x_, y_;
I f_;
};
%}
%define make_safe_interpolation(T,Alias)
%{
typedef SafeInterpolation<QuantLib::T> Safe##T;
%}
%rename(Alias) Safe##T;
class Safe##T {
#if defined(SWIGCSHARP)
%rename(call) operator();
#endif
public:
Safe##T(const Array& x, const Array& y);
Real operator()(Real x, bool allowExtrapolation=false);
};
%enddef
make_safe_interpolation(LinearInterpolation,LinearInterpolation);
make_safe_interpolation(LogLinearInterpolation,LogLinearInterpolation);
make_safe_interpolation(BackwardFlatInterpolation,BackwardFlatInterpolation);
make_safe_interpolation(ForwardFlatInterpolation,ForwardFlatInterpolation);
make_safe_interpolation(CubicNaturalSpline,CubicNaturalSpline);
make_safe_interpolation(LogCubicNaturalSpline,LogCubicNaturalSpline);
make_safe_interpolation(MonotonicCubicNaturalSpline,MonotonicCubicNaturalSpline);
make_safe_interpolation(MonotonicLogCubicNaturalSpline,MonotonicLogCubicNaturalSpline);
make_safe_interpolation(KrugerCubic,KrugerCubic);
make_safe_interpolation(KrugerLogCubic,KrugerLogCubic);
make_safe_interpolation(FritschButlandCubic,FritschButlandCubic);
make_safe_interpolation(FritschButlandLogCubic,FritschButlandLogCubic);
make_safe_interpolation(Parabolic,Parabolic);
make_safe_interpolation(LogParabolic,LogParabolic);
make_safe_interpolation(MonotonicParabolic,MonotonicParabolic);
make_safe_interpolation(MonotonicLogParabolic,MonotonicLogParabolic);
make_safe_interpolation(LagrangeInterpolation,LagrangeInterpolation);
%define extend_spline(T)
%extend Safe##T {
Real derivative(Real x, bool extrapolate = false) {
return self->f_.derivative(x,extrapolate);
}
Real secondDerivative(Real x, bool extrapolate = false) {
return self->f_.secondDerivative(x,extrapolate);
}
Real primitive(Real x, bool extrapolate = false) {
return self->f_.primitive(x,extrapolate);
}
}
%enddef
extend_spline(CubicNaturalSpline);
extend_spline(LogCubicNaturalSpline);
extend_spline(MonotonicCubicNaturalSpline);
extend_spline(MonotonicLogCubicNaturalSpline);
extend_spline(KrugerCubic);
extend_spline(KrugerLogCubic);
extend_spline(FritschButlandCubic);
extend_spline(FritschButlandLogCubic);
extend_spline(Parabolic);
extend_spline(LogParabolic);
extend_spline(MonotonicParabolic);
extend_spline(MonotonicLogParabolic);
%{
// safe versions which copy their arguments
template <class I>
class SafeInterpolation2D {
public:
SafeInterpolation2D(const Array& x, const Array& y, const Matrix& m)
: x_(x), y_(y), m_(m), f_(x_.begin(),x_.end(),y_.begin(),y_.end(),m_) {}
Real operator()(Real x, Real y, bool allowExtrapolation=false) {
return f_(x,y, allowExtrapolation);
}
protected:
Array x_, y_;
Matrix m_;
I f_;
};
%}
%define make_safe_interpolation2d(T,Alias)
%{
typedef SafeInterpolation2D<QuantLib::T> Safe##T;
%}
%rename(Alias) Safe##T;
class Safe##T {
#if defined(SWIGCSHARP)
%rename(call) operator();
#endif
public:
Safe##T(const Array& x, const Array& y, const Matrix& m);
Real operator()(Real x, Real y, bool allowExtrapolation=false);
};
%enddef
make_safe_interpolation2d(BilinearInterpolation,BilinearInterpolation);
make_safe_interpolation2d(BicubicSpline,BicubicSpline);
// interpolation traits
%{
using QuantLib::CubicInterpolation;
using QuantLib::MixedInterpolation;
using QuantLib::BackwardFlat;
using QuantLib::ForwardFlat;
using QuantLib::Linear;
using QuantLib::LogLinear;
using QuantLib::Cubic;
using QuantLib::Bicubic;
using QuantLib::ConvexMonotone;
using QuantLib::DefaultLogCubic;
using QuantLib::MonotonicLogCubic;
using QuantLib::KrugerLog;
class MonotonicCubic : public Cubic {
public:
MonotonicCubic()
: Cubic(CubicInterpolation::Spline, true,
CubicInterpolation::SecondDerivative, 0.0,
CubicInterpolation::SecondDerivative, 0.0) {}
};
class SplineCubic : public Cubic {
public:
SplineCubic()
: Cubic(CubicInterpolation::Spline, false,
CubicInterpolation::SecondDerivative, 0.0,
CubicInterpolation::SecondDerivative, 0.0) {}
};
class Kruger : public Cubic {
public:
Kruger()
: Cubic(CubicInterpolation::Kruger) {}
};
class SplineLogCubic : public QuantLib::LogCubic {
public:
SplineLogCubic()
: QuantLib::LogCubic(CubicInterpolation::Spline, false,
CubicInterpolation::SecondDerivative, 0.0,
CubicInterpolation::SecondDerivative, 0.0) {}
};
class LogMixedLinearCubic : public QuantLib::LogMixedLinearCubic {
public:
// We add defaults for all constructor arguments because wrappers for
// InterpolatedDiscountCurve and PiecewiseYieldCurve assume that all
// interpolators have default constructors.
LogMixedLinearCubic(
Size n = 0,
MixedInterpolation::Behavior behavior = MixedInterpolation::ShareRanges,
CubicInterpolation::DerivativeApprox da = CubicInterpolation::Spline,
bool monotonic = true)
: QuantLib::LogMixedLinearCubic(n, behavior, da, monotonic) {}
};
class ParabolicCubic : public QuantLib::Cubic {
public:
ParabolicCubic()
: QuantLib::Cubic(CubicInterpolation::Parabolic, false,
CubicInterpolation::SecondDerivative, 0.0,
CubicInterpolation::SecondDerivative, 0.0) {}
};
class MonotonicParabolicCubic : public QuantLib::Cubic {
public:
MonotonicParabolicCubic()
: QuantLib::Cubic(CubicInterpolation::Parabolic, true,
CubicInterpolation::SecondDerivative, 0.0,
CubicInterpolation::SecondDerivative, 0.0) {}
};
class LogParabolicCubic : public QuantLib::LogCubic {
public:
LogParabolicCubic()
: QuantLib::LogCubic(CubicInterpolation::Parabolic, false,
CubicInterpolation::SecondDerivative, 0.0,
CubicInterpolation::SecondDerivative, 0.0) {}
};
class MonotonicLogParabolicCubic : public QuantLib::LogCubic {
public:
MonotonicLogParabolicCubic()
: QuantLib::LogCubic(CubicInterpolation::Parabolic, true,
CubicInterpolation::SecondDerivative, 0.0,
CubicInterpolation::SecondDerivative, 0.0) {}
};
%}
%nodefaultctor CubicInterpolation;
struct CubicInterpolation {
enum DerivativeApprox {
Spline,
SplineOM1,
SplineOM2,
FourthOrder,
Parabolic,
FritschButland,
Akima,
Kruger,
Harmonic,
};
};
%nodefaultctor MixedInterpolation;
struct MixedInterpolation {
enum Behavior { ShareRanges, SplitRanges };
};
struct BackwardFlat {};
struct ForwardFlat {};
struct Linear {};
struct LogLinear {};
struct Cubic {};
struct Bicubic {};
struct MonotonicCubic {};
struct DefaultLogCubic {};
struct MonotonicLogCubic {};
struct SplineCubic {};
struct SplineLogCubic {};
struct Kruger {};
struct KrugerLog {};
struct ConvexMonotone {
ConvexMonotone(Real quadraticity = 0.3,
Real monotonicity = 0.7,
bool forcePositive = true);
};
struct ParabolicCubic {};
struct MonotonicParabolicCubic {};
struct LogParabolicCubic {};
struct MonotonicLogParabolicCubic {};
struct LogMixedLinearCubic {
#if !defined(SWIGJAVA) && !defined(SWIGCSHARP)
%feature("kwargs") LogMixedLinearCubic;
#endif
LogMixedLinearCubic(
Size n = 0,
MixedInterpolation::Behavior behavior = MixedInterpolation::ShareRanges,
CubicInterpolation::DerivativeApprox da = CubicInterpolation::Spline,
bool monotonic = true);
};
%{
using QuantLib::RichardsonExtrapolation;
%}
class RichardsonExtrapolation {
public:
Real operator()(Real t=2.0) const;
Real operator()(Real t, Real s) const;
#if defined(SWIGPYTHON)
%extend {
RichardsonExtrapolation(
PyObject* fct, Real delta_h, Real n = Null<Real>()) {
UnaryFunction f(fct);
return new RichardsonExtrapolation(f, delta_h, n);
}
}
#elif defined(SWIGJAVA) || defined(SWIGCSHARP)
%extend {
RichardsonExtrapolation(
UnaryFunctionDelegate* fct, Real delta_h, Real n = Null<Real>()) {
UnaryFunction f(fct);
return new RichardsonExtrapolation(f, delta_h, n);
}
}
#else
private:
RichardsonExtrapolation();
#endif
};
%{
class SafeConvexMonotoneInterpolation {
public:
SafeConvexMonotoneInterpolation(const Array& x, const Array& y,
Real quadraticity = 0.3,
Real monotonicity = 0.7,
bool forcePositive = true)
: x_(x), y_(y), f_(x_.begin(), x_.end(), y_.begin(),
quadraticity, monotonicity, forcePositive) {}
Real operator()(Real x, bool allowExtrapolation=false) {
return f_(x, allowExtrapolation);
}
Array x_, y_;
QuantLib::ConvexMonotoneInterpolation<Array::const_iterator, Array::const_iterator> f_;
};
%}
%{
using QuantLib::ChebyshevInterpolation;
%}
class ChebyshevInterpolation {
#if defined(SWIGCSHARP)
%rename(call) operator();
#endif
public:
enum PointsType {FirstKind, SecondKind};
ChebyshevInterpolation(const Array& f, PointsType pointsType = SecondKind);
#if defined(SWIGPYTHON)
%extend {
ChebyshevInterpolation(
Size n, PyObject* fct, PointsType pointsType = SecondKind) {
UnaryFunction f(fct);
return new ChebyshevInterpolation(n, f, pointsType);
}
}
#elif defined(SWIGJAVA) || defined(SWIGCSHARP)
%extend {
ChebyshevInterpolation(
Size n, UnaryFunctionDelegate* fct, PointsType pointsType = SecondKind) {
UnaryFunction f(fct);
return new ChebyshevInterpolation(n, f, pointsType);
}
}
#endif
Real operator()(Real z, bool allowExtrapolation=false) const;
static Array nodes(Size n, PointsType pointsType);
};
%rename(ConvexMonotoneInterpolation) SafeConvexMonotoneInterpolation;
class SafeConvexMonotoneInterpolation {
#if defined(SWIGCSHARP)
%rename(call) operator();
#endif
public:
SafeConvexMonotoneInterpolation(const Array& x, const Array& y,
Real quadraticity = 0.3,
Real monotonicity = 0.7,
bool forcePositive = true);
Real operator()(Real x, bool allowExtrapolation=false);
};
#endif
|