1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447
|
/*
Copyright (C) 2003 Ferdinando Ametrano
Copyright (C) 2000, 2001, 2002, 2003 RiskMap srl
Copyright (C) 2016 Gouthaman Balaraman
Copyright (C) 2019 Matthias Lungwitz
Copyright (C) 2024 Ralf Konrad Eckel
This file is part of QuantLib, a free-software/open-source library
for financial quantitative analysts and developers - http://quantlib.org/
QuantLib is free software: you can redistribute it and/or modify it
under the terms of the QuantLib license. You should have received a
copy of the license along with this program; if not, please email
<quantlib-dev@lists.sf.net>. The license is also available online at
<https://www.quantlib.org/license.shtml>.
This program is distributed in the hope that it will be useful, but WITHOUT
ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or FITNESS
FOR A PARTICULAR PURPOSE. See the license for more details.
*/
#ifndef quantlib_random_numbers_i
#define quantlib_random_numbers_i
%include distributions.i
%{
using QuantLib::Sample;
using QuantLib::LecuyerUniformRng;
using QuantLib::KnuthUniformRng;
using QuantLib::MersenneTwisterUniformRng;
using QuantLib::Xoshiro256StarStarUniformRng;
typedef QuantLib::PseudoRandom::urng_type UniformRandomGenerator;
using QuantLib::CLGaussianRng;
using QuantLib::BoxMullerGaussianRng;
using QuantLib::InverseCumulativeRng;
using QuantLib::ZigguratGaussianRng;
typedef QuantLib::PseudoRandom::rng_type GaussianRandomGenerator;
using QuantLib::RandomSequenceGenerator;
typedef QuantLib::PseudoRandom::ursg_type UniformRandomSequenceGenerator;
using QuantLib::SobolBrownianGenerator;
using QuantLib::HaltonRsg;
using QuantLib::SobolRsg;
using QuantLib::SobolBrownianBridgeRsg;
using QuantLib::Burley2020SobolRsg;
using QuantLib::Burley2020SobolBrownianBridgeRsg;
typedef QuantLib::LowDiscrepancy::ursg_type
UniformLowDiscrepancySequenceGenerator;
using QuantLib::InverseCumulativeRsg;
typedef QuantLib::PseudoRandom::rsg_type GaussianRandomSequenceGenerator;
typedef QuantLib::LowDiscrepancy::rsg_type
GaussianLowDiscrepancySequenceGenerator;
%}
template <class T>
class Sample {
private:
Sample();
public:
%extend {
const T& value() { return self->value; }
Real weight() { return self->weight; }
}
};
%template(SampleNumber) Sample<Real>;
%template(SampleArray) Sample<Array>;
%template(SampleRealVector) Sample<std::vector<Real> >;
/************* Uniform number generators *************/
#if defined(SWIGR)
%rename(nextSample) next;
#endif
class LecuyerUniformRng {
public:
LecuyerUniformRng(BigInteger seed=0);
Sample<Real> next() const;
};
class KnuthUniformRng {
public:
KnuthUniformRng(BigInteger seed=0);
Sample<Real> next() const;
};
class MersenneTwisterUniformRng {
public:
MersenneTwisterUniformRng(BigInteger seed = 0);
Sample<Real> next() const;
};
class Xoshiro256StarStarUniformRng {
public:
Xoshiro256StarStarUniformRng(BigInteger seed = 0);
Sample<Real> next() const;
};
class UniformRandomGenerator {
public:
UniformRandomGenerator(BigInteger seed=0);
Sample<Real> next() const;
%extend {
// improve performance for direct access. faster version
Real nextValue() const {
return (*self).next().value;
}
}
};
/************* Gaussian number generators *************/
template<class RNG> class CLGaussianRng {
public:
CLGaussianRng(const RNG& rng);
Sample<Real> next() const;
};
%template(CentralLimitLecuyerGaussianRng) CLGaussianRng<LecuyerUniformRng>;
%template(CentralLimitKnuthGaussianRng) CLGaussianRng<KnuthUniformRng>;
%template(CentralLimitMersenneTwisterGaussianRng) CLGaussianRng<MersenneTwisterUniformRng>;
%template(CentralLimitXoshiro256StarStarGaussianRng) CLGaussianRng<Xoshiro256StarStarUniformRng>;
template<class RNG> class BoxMullerGaussianRng {
public:
BoxMullerGaussianRng(const RNG& rng);
Sample<Real> next() const;
};
%template(BoxMullerLecuyerGaussianRng) BoxMullerGaussianRng<LecuyerUniformRng>;
%template(BoxMullerKnuthGaussianRng) BoxMullerGaussianRng<KnuthUniformRng>;
%template(BoxMullerMersenneTwisterGaussianRng) BoxMullerGaussianRng<MersenneTwisterUniformRng>;
%template(BoxMullerXoshiro256StarStarGaussianRng) BoxMullerGaussianRng<Xoshiro256StarStarUniformRng>;
template<class RNG, class F> class InverseCumulativeRng {
public:
InverseCumulativeRng(const RNG& rng);
Sample<Real> next() const;
};
%template(MoroInvCumulativeLecuyerGaussianRng)
InverseCumulativeRng<LecuyerUniformRng,MoroInverseCumulativeNormal>;
%template(MoroInvCumulativeKnuthGaussianRng)
InverseCumulativeRng<KnuthUniformRng,MoroInverseCumulativeNormal>;
%template(MoroInvCumulativeMersenneTwisterGaussianRng)
InverseCumulativeRng<MersenneTwisterUniformRng,MoroInverseCumulativeNormal>;
%template(MoroInvCumulativeXoshiro256StarStarGaussianRng)
InverseCumulativeRng<Xoshiro256StarStarUniformRng,MoroInverseCumulativeNormal>;
%template(InvCumulativeLecuyerGaussianRng)
InverseCumulativeRng<LecuyerUniformRng,InverseCumulativeNormal>;
%template(InvCumulativeKnuthGaussianRng)
InverseCumulativeRng<KnuthUniformRng,InverseCumulativeNormal>;
%template(InvCumulativeMersenneTwisterGaussianRng)
InverseCumulativeRng<MersenneTwisterUniformRng,InverseCumulativeNormal>;
%template(InvCumulativeXoshiro256StarStarGaussianRng)
InverseCumulativeRng<Xoshiro256StarStarUniformRng,InverseCumulativeNormal>;
template<class RNG> class ZigguratGaussianRng {
public:
ZigguratGaussianRng(const RNG& rng);
Sample<Real> next() const;
};
%template(ZigguratXoshiro256StarStarGaussianRng)
ZigguratGaussianRng<Xoshiro256StarStarUniformRng>;
class GaussianRandomGenerator {
public:
GaussianRandomGenerator(const UniformRandomGenerator& rng);
Sample<Real> next() const;
%extend {
// improve performance for direct access, faster version
Real nextValue() const {
return (*self).next().value;
}
}
};
/************* Uniform sequence generators *************/
class HaltonRsg {
public:
HaltonRsg(Size dimensionality, unsigned long seed = 0,
bool randomStart = true, bool randomShift = false);
const Sample<std::vector<Real> >& nextSequence() const;
const Sample<std::vector<Real> >& lastSequence() const;
Size dimension() const;
};
class SobolRsg {
public:
enum DirectionIntegers {
Unit, Jaeckel, SobolLevitan, SobolLevitanLemieux,
JoeKuoD5, JoeKuoD6, JoeKuoD7,
Kuo, Kuo2, Kuo3 };
SobolRsg(Size dimensionality, BigInteger seed=0,
DirectionIntegers directionIntegers = QuantLib::SobolRsg::Jaeckel);
const Sample<std::vector<Real> >& nextSequence() const;
const Sample<std::vector<Real> >& lastSequence() const;
Size dimension() const;
void skipTo(Size n);
%extend{
std::vector<unsigned int> nextInt32Sequence(){
return to_vector<unsigned int>($self->nextInt32Sequence());
}
}
};
class Burley2020SobolRsg {
public:
Burley2020SobolRsg(Size dimensionality,
BigInteger seed = 42,
SobolRsg::DirectionIntegers directionIntegers = QuantLib::SobolRsg::Jaeckel,
BigInteger scrambleSeed = 43);
const Sample<std::vector<Real> >& nextSequence() const;
const Sample<std::vector<Real> >& lastSequence() const;
Size dimension() const;
%extend{
std::vector<unsigned int> nextInt32Sequence(){
return to_vector<unsigned int>($self->nextInt32Sequence());
}
}
};
class SobolBrownianBridgeRsg {
public:
SobolBrownianBridgeRsg(Size factors, Size steps);
const Sample<std::vector<Real> >& nextSequence() const;
const Sample<std::vector<Real> >& lastSequence() const;
Size dimension() const;
};
class Burley2020SobolBrownianBridgeRsg {
public:
Burley2020SobolBrownianBridgeRsg(Size factors, Size steps);
const Sample<std::vector<Real> >& nextSequence() const;
const Sample<std::vector<Real> >& lastSequence() const;
Size dimension() const;
};
template<class RNG> class RandomSequenceGenerator {
public:
RandomSequenceGenerator(Size dimensionality,
const RNG& rng);
RandomSequenceGenerator(Size dimensionality,
BigNatural seed = 0);
const Sample<std::vector<Real> >& nextSequence() const;
Size dimension() const;
};
%template(LecuyerUniformRsg)
RandomSequenceGenerator<LecuyerUniformRng>;
%template(KnuthUniformRsg)
RandomSequenceGenerator<KnuthUniformRng>;
%template(MersenneTwisterUniformRsg)
RandomSequenceGenerator<MersenneTwisterUniformRng>;
%template(Xoshiro256StarStarUniformRsg)
RandomSequenceGenerator<Xoshiro256StarStarUniformRng>;
class UniformRandomSequenceGenerator {
public:
UniformRandomSequenceGenerator(Size dimensionality,
const UniformRandomGenerator& rng);
const Sample<std::vector<Real> >& nextSequence() const;
Size dimension() const;
};
class UniformLowDiscrepancySequenceGenerator {
public:
UniformLowDiscrepancySequenceGenerator(
Size dimensionality,
BigInteger seed=0,
SobolRsg::DirectionIntegers directionIntegers = QuantLib::SobolRsg::Jaeckel);
const Sample<std::vector<Real> >& nextSequence() const;
Size dimension() const;
};
/************* Gaussian sequence generators *************/
template <class U, class I>
class InverseCumulativeRsg {
public:
InverseCumulativeRsg(const U& uniformSequenceGenerator);
InverseCumulativeRsg(const U& uniformSequenceGenerator,
const I& inverseCumulative);
const Sample<std::vector<Real> >& nextSequence() const;
Size dimension() const;
};
%template(MoroInvCumulativeLecuyerGaussianRsg)
InverseCumulativeRsg<RandomSequenceGenerator<LecuyerUniformRng>,
MoroInverseCumulativeNormal>;
%template(MoroInvCumulativeKnuthGaussianRsg)
InverseCumulativeRsg<RandomSequenceGenerator<KnuthUniformRng>,
MoroInverseCumulativeNormal>;
%template(MoroInvCumulativeMersenneTwisterGaussianRsg)
InverseCumulativeRsg<RandomSequenceGenerator<MersenneTwisterUniformRng>,
MoroInverseCumulativeNormal>;
%template(MoroInvCumulativeXoshiro256StarStarGaussianRsg)
InverseCumulativeRsg<RandomSequenceGenerator<Xoshiro256StarStarUniformRng>,
MoroInverseCumulativeNormal>;
%template(MoroInvCumulativeHaltonGaussianRsg)
InverseCumulativeRsg<HaltonRsg,MoroInverseCumulativeNormal>;
%template(MoroInvCumulativeSobolGaussianRsg)
InverseCumulativeRsg<SobolRsg,MoroInverseCumulativeNormal>;
%template(MoroInvCumulativeBurley2020SobolGaussianRsg)
InverseCumulativeRsg<Burley2020SobolRsg,MoroInverseCumulativeNormal>;
%template(InvCumulativeLecuyerGaussianRsg)
InverseCumulativeRsg<RandomSequenceGenerator<LecuyerUniformRng>,
InverseCumulativeNormal>;
%template(InvCumulativeKnuthGaussianRsg)
InverseCumulativeRsg<RandomSequenceGenerator<KnuthUniformRng>,
InverseCumulativeNormal>;
%template(InvCumulativeMersenneTwisterGaussianRsg)
InverseCumulativeRsg<RandomSequenceGenerator<MersenneTwisterUniformRng>,
InverseCumulativeNormal>;
%template(InvCumulativeXoshiro256StarStarGaussianRsg)
InverseCumulativeRsg<RandomSequenceGenerator<Xoshiro256StarStarUniformRng>,
InverseCumulativeNormal>;
%template(InvCumulativeHaltonGaussianRsg)
InverseCumulativeRsg<HaltonRsg,InverseCumulativeNormal>;
%template(InvCumulativeSobolGaussianRsg)
InverseCumulativeRsg<SobolRsg,InverseCumulativeNormal>;
%template(InvCumulativeBurley2020SobolGaussianRsg)
InverseCumulativeRsg<Burley2020SobolRsg,InverseCumulativeNormal>;
%{
typedef RandomSequenceGenerator<ZigguratGaussianRng<Xoshiro256StarStarUniformRng>> ZigguratXoshiro256StarStarGaussianRsg;
%}
class ZigguratXoshiro256StarStarGaussianRsg {
public:
ZigguratXoshiro256StarStarGaussianRsg(Size dimensionality,
const ZigguratGaussianRng<Xoshiro256StarStarUniformRng>& rng);
const Sample<std::vector<Real> >& nextSequence() const;
Size dimension() const;
};
class GaussianRandomSequenceGenerator {
public:
GaussianRandomSequenceGenerator(
const UniformRandomSequenceGenerator& uniformSequenceGenerator);
const Sample<std::vector<Real> >& nextSequence() const;
Size dimension() const;
};
class GaussianLowDiscrepancySequenceGenerator {
public:
GaussianLowDiscrepancySequenceGenerator(
const UniformLowDiscrepancySequenceGenerator& u);
const Sample<std::vector<Real> >& nextSequence() const;
Size dimension() const;
};
/************* LMM-style sequence generators *************/
%{
using QuantLib::BrownianGenerator;
using QuantLib::MTBrownianGenerator;
using QuantLib::SobolBrownianGenerator;
using QuantLib::BrownianGeneratorFactory;
using QuantLib::MTBrownianGeneratorFactory;
using QuantLib::SobolBrownianGeneratorFactory;
%}
%shared_ptr(BrownianGenerator)
class BrownianGenerator {
public:
Real nextStep(std::vector<Real>&);
Real nextPath();
Size numberOfFactors() const;
Size numberOfSteps() const;
private:
BrownianGenerator();
};
%shared_ptr(BrownianGeneratorFactory)
class BrownianGeneratorFactory {
public:
ext::shared_ptr<BrownianGenerator> create(Size factors,
Size steps) const;
private:
BrownianGeneratorFactory();
};
%shared_ptr(MTBrownianGenerator)
class MTBrownianGenerator : public BrownianGenerator {
public:
MTBrownianGenerator(Size factors,
Size steps,
unsigned long seed = 0);
};
%shared_ptr(MTBrownianGeneratorFactory)
class MTBrownianGeneratorFactory : public BrownianGeneratorFactory {
public:
MTBrownianGeneratorFactory(unsigned long seed = 0);
};
%shared_ptr(SobolBrownianGenerator)
class SobolBrownianGenerator : public BrownianGenerator {
public:
enum Ordering { Factors, Steps, Diagonal };
SobolBrownianGenerator(Size factors,
Size steps,
Ordering ordering,
unsigned long seed = 0,
SobolRsg::DirectionIntegers directionIntegers = SobolRsg::Jaeckel);
};
%shared_ptr(SobolBrownianGeneratorFactory)
class SobolBrownianGeneratorFactory : public BrownianGeneratorFactory {
public:
SobolBrownianGeneratorFactory(
SobolBrownianGenerator::Ordering ordering,
unsigned long seed = 0,
SobolRsg::DirectionIntegers directionIntegers = SobolRsg::Jaeckel);
};
#endif
|