File: randomnumbers.i

package info (click to toggle)
quantlib-swig 1.40-3
  • links: PTS, VCS
  • area: main
  • in suites: forky, sid
  • size: 2,276 kB
  • sloc: python: 6,024; java: 1,552; cs: 774; makefile: 309; sh: 22
file content (447 lines) | stat: -rw-r--r-- 14,821 bytes parent folder | download
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447

/*
 Copyright (C) 2003 Ferdinando Ametrano
 Copyright (C) 2000, 2001, 2002, 2003 RiskMap srl
 Copyright (C) 2016 Gouthaman Balaraman
 Copyright (C) 2019 Matthias Lungwitz
 Copyright (C) 2024 Ralf Konrad Eckel

 This file is part of QuantLib, a free-software/open-source library
 for financial quantitative analysts and developers - http://quantlib.org/

 QuantLib is free software: you can redistribute it and/or modify it
 under the terms of the QuantLib license.  You should have received a
 copy of the license along with this program; if not, please email
 <quantlib-dev@lists.sf.net>. The license is also available online at
 <https://www.quantlib.org/license.shtml>.

 This program is distributed in the hope that it will be useful, but WITHOUT
 ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or FITNESS
 FOR A PARTICULAR PURPOSE.  See the license for more details.
*/

#ifndef quantlib_random_numbers_i
#define quantlib_random_numbers_i

%include distributions.i

%{
using QuantLib::Sample;

using QuantLib::LecuyerUniformRng;
using QuantLib::KnuthUniformRng;
using QuantLib::MersenneTwisterUniformRng;
using QuantLib::Xoshiro256StarStarUniformRng;

typedef QuantLib::PseudoRandom::urng_type UniformRandomGenerator;

using QuantLib::CLGaussianRng;
using QuantLib::BoxMullerGaussianRng;
using QuantLib::InverseCumulativeRng;
using QuantLib::ZigguratGaussianRng;

typedef QuantLib::PseudoRandom::rng_type GaussianRandomGenerator;

using QuantLib::RandomSequenceGenerator;

typedef QuantLib::PseudoRandom::ursg_type UniformRandomSequenceGenerator;
using QuantLib::SobolBrownianGenerator;

using QuantLib::HaltonRsg;
using QuantLib::SobolRsg;
using QuantLib::SobolBrownianBridgeRsg;
using QuantLib::Burley2020SobolRsg;
using QuantLib::Burley2020SobolBrownianBridgeRsg;

typedef QuantLib::LowDiscrepancy::ursg_type
    UniformLowDiscrepancySequenceGenerator;

using QuantLib::InverseCumulativeRsg;

typedef QuantLib::PseudoRandom::rsg_type GaussianRandomSequenceGenerator;
typedef QuantLib::LowDiscrepancy::rsg_type
    GaussianLowDiscrepancySequenceGenerator;
%}

template <class T>
class Sample {
  private:
    Sample();
  public:
    %extend {
        const T& value() { return self->value; }
        Real weight() { return self->weight; }
    }
};

%template(SampleNumber) Sample<Real>;
%template(SampleArray) Sample<Array>;
%template(SampleRealVector) Sample<std::vector<Real> >; 

/************* Uniform number generators *************/

#if defined(SWIGR)
%rename(nextSample) next;
#endif

class LecuyerUniformRng {
  public:
    LecuyerUniformRng(BigInteger seed=0);
    Sample<Real> next() const;
};

class KnuthUniformRng {
  public:
    KnuthUniformRng(BigInteger seed=0);
    Sample<Real> next() const;
};

class MersenneTwisterUniformRng {
  public:
    MersenneTwisterUniformRng(BigInteger seed = 0);
    Sample<Real> next() const;
};

class Xoshiro256StarStarUniformRng {
  public:
    Xoshiro256StarStarUniformRng(BigInteger seed = 0);
    Sample<Real> next() const;
};

class UniformRandomGenerator {
  public:
    UniformRandomGenerator(BigInteger seed=0);
    Sample<Real> next() const;

	%extend {
		// improve performance for direct access. faster version
		Real nextValue() const {
			return (*self).next().value;
		}
	}    
};


/************* Gaussian number generators *************/

template<class RNG> class CLGaussianRng {
  public:
    CLGaussianRng(const RNG& rng);
    Sample<Real> next() const;
};

%template(CentralLimitLecuyerGaussianRng) CLGaussianRng<LecuyerUniformRng>;
%template(CentralLimitKnuthGaussianRng)   CLGaussianRng<KnuthUniformRng>;
%template(CentralLimitMersenneTwisterGaussianRng) CLGaussianRng<MersenneTwisterUniformRng>;
%template(CentralLimitXoshiro256StarStarGaussianRng) CLGaussianRng<Xoshiro256StarStarUniformRng>;

template<class RNG> class BoxMullerGaussianRng {
  public:
    BoxMullerGaussianRng(const RNG& rng);
    Sample<Real> next() const;
};

%template(BoxMullerLecuyerGaussianRng) BoxMullerGaussianRng<LecuyerUniformRng>;
%template(BoxMullerKnuthGaussianRng)   BoxMullerGaussianRng<KnuthUniformRng>;
%template(BoxMullerMersenneTwisterGaussianRng) BoxMullerGaussianRng<MersenneTwisterUniformRng>;
%template(BoxMullerXoshiro256StarStarGaussianRng) BoxMullerGaussianRng<Xoshiro256StarStarUniformRng>;

template<class RNG, class F> class InverseCumulativeRng {
  public:
    InverseCumulativeRng(const RNG& rng);
    Sample<Real> next() const;
};

%template(MoroInvCumulativeLecuyerGaussianRng)
    InverseCumulativeRng<LecuyerUniformRng,MoroInverseCumulativeNormal>;
%template(MoroInvCumulativeKnuthGaussianRng)
    InverseCumulativeRng<KnuthUniformRng,MoroInverseCumulativeNormal>;
%template(MoroInvCumulativeMersenneTwisterGaussianRng)
    InverseCumulativeRng<MersenneTwisterUniformRng,MoroInverseCumulativeNormal>;
%template(MoroInvCumulativeXoshiro256StarStarGaussianRng)
    InverseCumulativeRng<Xoshiro256StarStarUniformRng,MoroInverseCumulativeNormal>;

%template(InvCumulativeLecuyerGaussianRng)
    InverseCumulativeRng<LecuyerUniformRng,InverseCumulativeNormal>;
%template(InvCumulativeKnuthGaussianRng)
    InverseCumulativeRng<KnuthUniformRng,InverseCumulativeNormal>;
%template(InvCumulativeMersenneTwisterGaussianRng)
    InverseCumulativeRng<MersenneTwisterUniformRng,InverseCumulativeNormal>;
%template(InvCumulativeXoshiro256StarStarGaussianRng)
    InverseCumulativeRng<Xoshiro256StarStarUniformRng,InverseCumulativeNormal>;

template<class RNG> class ZigguratGaussianRng {
public:
  ZigguratGaussianRng(const RNG& rng);
  Sample<Real> next() const;
};

%template(ZigguratXoshiro256StarStarGaussianRng)
        ZigguratGaussianRng<Xoshiro256StarStarUniformRng>;

class GaussianRandomGenerator {
  public:
    GaussianRandomGenerator(const UniformRandomGenerator& rng);
    Sample<Real> next() const;

	%extend {
		// improve performance for direct access, faster version
		Real nextValue() const {
			return (*self).next().value;
		}
	}    
};

/************* Uniform sequence generators *************/


class HaltonRsg {
  public:
    HaltonRsg(Size dimensionality, unsigned long seed = 0,
                  bool randomStart = true, bool randomShift = false);
    const Sample<std::vector<Real> >& nextSequence() const;
    const Sample<std::vector<Real> >& lastSequence() const;
    Size dimension() const;
};

class SobolRsg {
  public:
    enum DirectionIntegers {
            Unit, Jaeckel, SobolLevitan, SobolLevitanLemieux,
            JoeKuoD5, JoeKuoD6, JoeKuoD7,
            Kuo, Kuo2, Kuo3 };
    SobolRsg(Size dimensionality, BigInteger seed=0,
             DirectionIntegers directionIntegers = QuantLib::SobolRsg::Jaeckel);
    const Sample<std::vector<Real> >& nextSequence() const;
    const Sample<std::vector<Real> >& lastSequence() const;
    Size dimension() const;
    void skipTo(Size n);
    %extend{
      std::vector<unsigned int> nextInt32Sequence(){
          return to_vector<unsigned int>($self->nextInt32Sequence());
      }
    }
};

class Burley2020SobolRsg {
  public:
    Burley2020SobolRsg(Size dimensionality,
                       BigInteger seed = 42,
                       SobolRsg::DirectionIntegers directionIntegers = QuantLib::SobolRsg::Jaeckel,
                       BigInteger scrambleSeed = 43);
    const Sample<std::vector<Real> >& nextSequence() const;
    const Sample<std::vector<Real> >& lastSequence() const;
    Size dimension() const;
    %extend{
      std::vector<unsigned int> nextInt32Sequence(){
          return to_vector<unsigned int>($self->nextInt32Sequence());
      }
    }
};


class SobolBrownianBridgeRsg {
  public:
    SobolBrownianBridgeRsg(Size factors, Size steps);
    const Sample<std::vector<Real> >&  nextSequence() const;
    const Sample<std::vector<Real> >&  lastSequence() const;
    Size dimension() const;
};

class Burley2020SobolBrownianBridgeRsg {
  public:
    Burley2020SobolBrownianBridgeRsg(Size factors, Size steps);
    const Sample<std::vector<Real> >&  nextSequence() const;
    const Sample<std::vector<Real> >&  lastSequence() const;
    Size dimension() const;
};


template<class RNG> class RandomSequenceGenerator {
  public:
    RandomSequenceGenerator(Size dimensionality,
                            const RNG& rng);
    RandomSequenceGenerator(Size dimensionality,
                            BigNatural seed = 0);
    const Sample<std::vector<Real> >& nextSequence() const;
    Size dimension() const;
};

%template(LecuyerUniformRsg)
    RandomSequenceGenerator<LecuyerUniformRng>;
%template(KnuthUniformRsg)
    RandomSequenceGenerator<KnuthUniformRng>;
%template(MersenneTwisterUniformRsg)
    RandomSequenceGenerator<MersenneTwisterUniformRng>;
%template(Xoshiro256StarStarUniformRsg)
    RandomSequenceGenerator<Xoshiro256StarStarUniformRng>;

class UniformRandomSequenceGenerator {
  public:
    UniformRandomSequenceGenerator(Size dimensionality,
                                   const UniformRandomGenerator& rng);
    const Sample<std::vector<Real> >& nextSequence() const;
    Size dimension() const;
};

class UniformLowDiscrepancySequenceGenerator {
  public:
    UniformLowDiscrepancySequenceGenerator(
        Size dimensionality,
        BigInteger seed=0,
        SobolRsg::DirectionIntegers directionIntegers = QuantLib::SobolRsg::Jaeckel);
    const Sample<std::vector<Real> >& nextSequence() const;
    Size dimension() const;
};

/************* Gaussian sequence generators *************/

template <class U, class I>
class InverseCumulativeRsg {
  public:
    InverseCumulativeRsg(const U& uniformSequenceGenerator);
    InverseCumulativeRsg(const U& uniformSequenceGenerator,
                             const I& inverseCumulative);
    const Sample<std::vector<Real> >& nextSequence() const;
    Size dimension() const;
};


%template(MoroInvCumulativeLecuyerGaussianRsg)
    InverseCumulativeRsg<RandomSequenceGenerator<LecuyerUniformRng>,
                         MoroInverseCumulativeNormal>;
%template(MoroInvCumulativeKnuthGaussianRsg)
    InverseCumulativeRsg<RandomSequenceGenerator<KnuthUniformRng>,
                         MoroInverseCumulativeNormal>;
%template(MoroInvCumulativeMersenneTwisterGaussianRsg)
    InverseCumulativeRsg<RandomSequenceGenerator<MersenneTwisterUniformRng>,
                         MoroInverseCumulativeNormal>;
%template(MoroInvCumulativeXoshiro256StarStarGaussianRsg)
    InverseCumulativeRsg<RandomSequenceGenerator<Xoshiro256StarStarUniformRng>,
                         MoroInverseCumulativeNormal>;
%template(MoroInvCumulativeHaltonGaussianRsg)
    InverseCumulativeRsg<HaltonRsg,MoroInverseCumulativeNormal>;
%template(MoroInvCumulativeSobolGaussianRsg)
    InverseCumulativeRsg<SobolRsg,MoroInverseCumulativeNormal>;
%template(MoroInvCumulativeBurley2020SobolGaussianRsg)
    InverseCumulativeRsg<Burley2020SobolRsg,MoroInverseCumulativeNormal>;

%template(InvCumulativeLecuyerGaussianRsg)
    InverseCumulativeRsg<RandomSequenceGenerator<LecuyerUniformRng>,
                         InverseCumulativeNormal>;
%template(InvCumulativeKnuthGaussianRsg)
    InverseCumulativeRsg<RandomSequenceGenerator<KnuthUniformRng>,
                         InverseCumulativeNormal>;
%template(InvCumulativeMersenneTwisterGaussianRsg)
    InverseCumulativeRsg<RandomSequenceGenerator<MersenneTwisterUniformRng>,
                         InverseCumulativeNormal>;
%template(InvCumulativeXoshiro256StarStarGaussianRsg)
    InverseCumulativeRsg<RandomSequenceGenerator<Xoshiro256StarStarUniformRng>,
                         InverseCumulativeNormal>;
%template(InvCumulativeHaltonGaussianRsg)
    InverseCumulativeRsg<HaltonRsg,InverseCumulativeNormal>;
%template(InvCumulativeSobolGaussianRsg)
    InverseCumulativeRsg<SobolRsg,InverseCumulativeNormal>;
%template(InvCumulativeBurley2020SobolGaussianRsg)
    InverseCumulativeRsg<Burley2020SobolRsg,InverseCumulativeNormal>;

%{
typedef RandomSequenceGenerator<ZigguratGaussianRng<Xoshiro256StarStarUniformRng>> ZigguratXoshiro256StarStarGaussianRsg;
%}

class ZigguratXoshiro256StarStarGaussianRsg {
  public:
    ZigguratXoshiro256StarStarGaussianRsg(Size dimensionality,
                                          const ZigguratGaussianRng<Xoshiro256StarStarUniformRng>& rng);
    const Sample<std::vector<Real> >& nextSequence() const;
    Size dimension() const;
};


class GaussianRandomSequenceGenerator {
  public:
    GaussianRandomSequenceGenerator(
        const UniformRandomSequenceGenerator& uniformSequenceGenerator);
    const Sample<std::vector<Real> >& nextSequence() const;
    Size dimension() const;
};

class GaussianLowDiscrepancySequenceGenerator {
  public:
    GaussianLowDiscrepancySequenceGenerator(
        const UniformLowDiscrepancySequenceGenerator& u);
    const Sample<std::vector<Real> >& nextSequence() const;
    Size dimension() const;
};



/************* LMM-style sequence generators *************/


%{
using QuantLib::BrownianGenerator;
using QuantLib::MTBrownianGenerator;
using QuantLib::SobolBrownianGenerator;
using QuantLib::BrownianGeneratorFactory;
using QuantLib::MTBrownianGeneratorFactory;
using QuantLib::SobolBrownianGeneratorFactory;
%}

%shared_ptr(BrownianGenerator)
class BrownianGenerator {
  public:
    Real nextStep(std::vector<Real>&);
    Real nextPath();

    Size numberOfFactors() const;
    Size numberOfSteps() const;
  private:
    BrownianGenerator();
};

%shared_ptr(BrownianGeneratorFactory)
class BrownianGeneratorFactory {
  public:
    ext::shared_ptr<BrownianGenerator> create(Size factors,
                                              Size steps) const;
  private:
    BrownianGeneratorFactory();
};

%shared_ptr(MTBrownianGenerator)
class MTBrownianGenerator : public BrownianGenerator {
  public:
    MTBrownianGenerator(Size factors,
                        Size steps,
                        unsigned long seed = 0);
};

%shared_ptr(MTBrownianGeneratorFactory)
class MTBrownianGeneratorFactory : public BrownianGeneratorFactory {
  public:
    MTBrownianGeneratorFactory(unsigned long seed = 0);
};

%shared_ptr(SobolBrownianGenerator)
class SobolBrownianGenerator : public BrownianGenerator {
  public:
    enum Ordering { Factors, Steps, Diagonal };
    SobolBrownianGenerator(Size factors,
                           Size steps,
                           Ordering ordering,
                           unsigned long seed = 0,
                           SobolRsg::DirectionIntegers directionIntegers = SobolRsg::Jaeckel);
};

%shared_ptr(SobolBrownianGeneratorFactory)
class SobolBrownianGeneratorFactory : public BrownianGeneratorFactory {
  public:
    SobolBrownianGeneratorFactory(
                           SobolBrownianGenerator::Ordering ordering,
                           unsigned long seed = 0,
                           SobolRsg::DirectionIntegers directionIntegers = SobolRsg::Jaeckel);
};


#endif