File: EquityOptions.scala

package info (click to toggle)
quantlib-swig 1.40-3
  • links: PTS, VCS
  • area: main
  • in suites: forky
  • size: 2,276 kB
  • sloc: python: 6,024; java: 1,552; cs: 774; makefile: 309; sh: 22
file content (383 lines) | stat: -rw-r--r-- 18,005 bytes parent folder | download | duplicates (2)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
/*
 Copyright (C) 2011 Klaus Spanderen


 This file is part of QuantLib, a free-software/open-source library
 for financial quantitative analysts and developers - http://quantlib.org/

 QuantLib is free software: you can redistribute it and/or modify it
 under the terms of the QuantLib license.  You should have received a
 copy of the license along with this program; if not, please email
 <quantlib-dev@lists.sf.net>. The license is also available online at
 <https://www.quantlib.org/license.shtml>.

 This program is distributed in the hope that it will be useful, but WITHOUT
 ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or FITNESS
 FOR A PARTICULAR PURPOSE.  See the license for more details.
*/

package examples;

import scala.actors.Actor
import org.quantlib.{Array => QArray, _}


/**
 * EquityOption Test app - simple multithreading Scala version of 
 * QuantLib/Examples/EquityOption
 * to illustrate use of Quantlib through supplied SWIG interfaces.
 *
 * You need to run this using the Java Jar file and JNI library
  */


class VanillaPricingService(payoff: PlainVanillaPayoff, 
                            exercise: Exercise) extends Actor {
    start()

    def act() {
        react {
            case (engine: PricingEngine) => {

                // copy instrument data to ensure thread safe execution

                val t = exercise exerciseType match {
                    case Exercise.Type.European => new EuropeanExercise(
                                                    exercise.dates().get(0))
                    case Exercise.Type.Bermudan => new BermudanExercise(
                                                    exercise.dates());
                    case Exercise.Type.American =>
                        new AmericanExercise(
                            exercise.dates get 0, exercise.dates().get(
                            (exercise.dates.size() - 1).toInt))
                }
                val instrument = new VanillaOption(
                    new PlainVanillaPayoff(payoff.optionType, payoff.strike),
                                           exercise)
                instrument.setPricingEngine(engine)
                reply(instrument.NPV())
            }
        }
    }
}

object SimpleFactory {
    val optionType = Option.Type.Put
    val strike     = 40.0
    val underlying = 36.0
    val riskFreeRate = 0.06
    val dividendYield = 0.00
    val volatility = 0.2

    val calendar = new TARGET()
    val dayCounter = new Actual365Fixed()
    val settlementDate = new Date(17, Month.May, 1998)

    def bsProcess() : BlackScholesMertonProcess = {
        val flatVolatility = new BlackVolTermStructureHandle(
                    new BlackConstantVol(settlementDate, calendar, 
                                         volatility, dayCounter))
        new BlackScholesMertonProcess(spot, divYield,
                                      rTS, flatVolatility)
    }

    def hestonProcess() : HestonProcess = {
        new HestonProcess(rTS, divYield, spot, volatility*volatility,
                          1.0, volatility*volatility, 0.0001, 0.0)
    }

    def batesProcess() : BatesProcess = {
        new BatesProcess(rTS, divYield, spot, volatility*volatility,
                         1.0, volatility*volatility, 0.0001, 0.0,
                         1e-14, 1e-14, 1e-14)
    }
    private def rTS : YieldTermStructureHandle = {
        new YieldTermStructureHandle(
                    new FlatForward(settlementDate, riskFreeRate, dayCounter))
    }
    private def divYield : YieldTermStructureHandle = {
        new YieldTermStructureHandle(
                    new FlatForward(settlementDate, dividendYield, dayCounter))
    }
    private def spot : QuoteHandle = {
        new QuoteHandle(new SimpleQuote(underlying))
    }
}

object EquityOptions {
    def main(args: Array[String]) : Unit = {

        try {
            System.loadLibrary("QuantLibJNI");
        } 
        catch {
            case ex: UnsatisfiedLinkError => {
                  println("please check your LD_LIBRARY_PATH variable")
                throw ex
            }
        }

        val beginTime  = System.currentTimeMillis()
        
        val optionType = Option.Type.Put
        val strike     = 40.0
        val todaysDate = new Date(15, Month.May, 1998)
        val settlementDate = SimpleFactory.settlementDate
        Settings.instance setEvaluationDate todaysDate

        val maturity = new Date(17, Month.May, 1999)
        val dayCounter = new Actual365Fixed()
        val calendar = new TARGET()

        // define European, Bermudan, and American exercises
        val exerciseDates = new DateVector()
        (1 to 4).foreach(i => exerciseDates add settlementDate.
                                     add(new Period(3*i, TimeUnit.Months)))
        
        val europeanExercise = new EuropeanExercise(maturity)
        val bermudanExercise = new BermudanExercise(exerciseDates)
        val americanExercise = new AmericanExercise(settlementDate, maturity)

        val payoff = new PlainVanillaPayoff(optionType, strike)

        // Black-Scholes for European
        val analyticEuropeanNpv =
                 new VanillaPricingService(payoff, europeanExercise) !! 
                        new AnalyticEuropeanEngine(SimpleFactory.bsProcess())

        val hestonModel = new HestonModel(SimpleFactory.hestonProcess())
             
        // Heston for European                            
        val analyticHestonNpv = 
            new VanillaPricingService(payoff, europeanExercise) !!
                new AnalyticHestonEngine(new HestonModel(
                    SimpleFactory.hestonProcess()))
                
        val fdEuropeanHestonNpv =
            new VanillaPricingService(payoff, europeanExercise) !!
                new FdHestonVanillaEngine(new HestonModel(
                    SimpleFactory.hestonProcess()), 50, 150) 

        val fdAmericanHestonNpv =
            new VanillaPricingService(payoff, americanExercise) !!
                new FdHestonVanillaEngine(new HestonModel(
                    SimpleFactory.hestonProcess()), 100, 150) 

        val fdBermudanHestonNpv =
            new VanillaPricingService(payoff, bermudanExercise) !!
                new FdHestonVanillaEngine(new HestonModel(
                    SimpleFactory.hestonProcess()), 100, 150) 

        val batesModel = new BatesModel(SimpleFactory.batesProcess())
        
        val cosHestonNpv = 
            new VanillaPricingService(payoff, europeanExercise) !!
                new COSHestonEngine(new HestonModel(
                                    SimpleFactory.hestonProcess()))

        // Bates for European
        val analyticBatesNpv =
            new VanillaPricingService(payoff, europeanExercise) !!
                new BatesEngine(new BatesModel(
                	SimpleFactory.batesProcess()))

        val fdEuropeanBatesNpv =
            new VanillaPricingService(payoff, europeanExercise) !!
                new FdBatesVanillaEngine(new BatesModel(
                    SimpleFactory.batesProcess()), 50, 150)

        val fdAmericanBatesNpv =
            new VanillaPricingService(payoff, americanExercise) !!
                new FdBatesVanillaEngine(new BatesModel(
                    SimpleFactory.batesProcess()))

        val fdBermudanBatesNpv =
            new VanillaPricingService(payoff, bermudanExercise) !!
                new FdBatesVanillaEngine(new BatesModel(
                    SimpleFactory.batesProcess()))

        // Barone-Adesi and Whaley approximation for American
        val baroneAdesiWhaleyNpv = 
            new VanillaPricingService(payoff, americanExercise) !!
                new BaroneAdesiWhaleyApproximationEngine(SimpleFactory.bsProcess())

        // Bjerksund and Stensland approximation for American
        val bjerksundStenslandNpv = 
            new VanillaPricingService(payoff, americanExercise) !!
                new BjerksundStenslandApproximationEngine(SimpleFactory.bsProcess())

        // Integral
        val integralNpv = new VanillaPricingService(payoff,europeanExercise) !!
                                new IntegralEngine(SimpleFactory.bsProcess())

        // Finite Difference
        var timeSteps : Int = 801;
        val fdEuropeanNpv =
            new VanillaPricingService(payoff, europeanExercise) !!
                new FdBlackScholesVanillaEngine(SimpleFactory.bsProcess(),
                                                timeSteps, timeSteps-1)
        val fdBermudanNpv =
            new VanillaPricingService(payoff, bermudanExercise) !!
                new FdBlackScholesVanillaEngine(SimpleFactory.bsProcess(),
                                                timeSteps, timeSteps-1)
        val fdAmericanNpv =
            new VanillaPricingService(payoff, americanExercise) !!
                new FdBlackScholesVanillaEngine(SimpleFactory.bsProcess(),
                                                timeSteps, timeSteps-1)

        // Binomial method      
        val jarrowRuddEuropeanNpv = 
            new VanillaPricingService(payoff, europeanExercise) !!
                       new BinomialJRVanillaEngine(SimpleFactory.bsProcess(), timeSteps)
        val jarrowRuddBermudanNpv = 
            new VanillaPricingService(payoff, bermudanExercise) !! 
                    new BinomialJRVanillaEngine(SimpleFactory.bsProcess(), timeSteps)
        val jarrowRuddAmericanNpv = 
            new VanillaPricingService(payoff, americanExercise) !!
                    new BinomialJRVanillaEngine(SimpleFactory.bsProcess(), timeSteps)
        val coxRossRubinsteinEuropeanNpv = 
            new VanillaPricingService(payoff, europeanExercise) !!
                   new BinomialCRRVanillaEngine(SimpleFactory.bsProcess(), timeSteps)
        val coxRossRubinsteinBermudanNpv = 
            new VanillaPricingService(payoff, bermudanExercise) !!
                   new BinomialCRRVanillaEngine(SimpleFactory.bsProcess(), timeSteps)
        val coxRossRubinsteinAmericanNpv = 
            new VanillaPricingService(payoff, americanExercise) !!
                   new BinomialCRRVanillaEngine(SimpleFactory.bsProcess(), timeSteps)
        val additiveEqpEuropeanNpv =                                          
            new VanillaPricingService(payoff, europeanExercise) !!
             new BinomialEQPVanillaEngine(SimpleFactory.bsProcess(), timeSteps)
        val additiveEqpBermudanNpv = 
            new VanillaPricingService(payoff, bermudanExercise) !!
                 new BinomialEQPVanillaEngine(SimpleFactory.bsProcess(), timeSteps)
        val additiveEqpAmericanNpv = 
            new VanillaPricingService(payoff, americanExercise) !!
                 new BinomialEQPVanillaEngine(SimpleFactory.bsProcess(), timeSteps)
        val trigeirgisEuropeanNpv = 
            new VanillaPricingService(payoff, europeanExercise) !!
                        new BinomialTrigeorgisVanillaEngine(SimpleFactory.bsProcess(), timeSteps)
        val trigeirgisBermudanNpv = 
            new VanillaPricingService(payoff, bermudanExercise) !!
                          new BinomialTrigeorgisVanillaEngine(SimpleFactory.bsProcess(), timeSteps) 
        val trigeirgisAmericanNpv =      
            new VanillaPricingService(payoff, americanExercise) !!
                          new BinomialTrigeorgisVanillaEngine(SimpleFactory.bsProcess(), timeSteps)
        val tianEuropeanNpv = 
            new VanillaPricingService(payoff, europeanExercise) !!
                          new BinomialTianVanillaEngine(SimpleFactory.bsProcess(), timeSteps)
        val tianBermudanNpv = 
            new VanillaPricingService(payoff, bermudanExercise) !!
                          new BinomialTianVanillaEngine(SimpleFactory.bsProcess(), timeSteps)
        val tianAmericanNpv = 
            new VanillaPricingService(payoff, americanExercise) !!
                          new BinomialTianVanillaEngine(SimpleFactory.bsProcess(), timeSteps)
        val leisenReimerEuropeanNpv = 
            new VanillaPricingService(payoff, europeanExercise) !!
                          new BinomialTianVanillaEngine(SimpleFactory.bsProcess(), timeSteps)
        val leisenReimerBermudanNpv = 
            new VanillaPricingService(payoff, bermudanExercise) !!
                          new BinomialLRVanillaEngine(SimpleFactory.bsProcess(), timeSteps)
        val leisenReimerAmericanNpv = 
            new VanillaPricingService(payoff, americanExercise) !!
                          new BinomialLRVanillaEngine(SimpleFactory.bsProcess(), timeSteps)
        val joshiEuropeanNpv = 
            new VanillaPricingService(payoff, europeanExercise) !!
                          new BinomialJ4VanillaEngine(SimpleFactory.bsProcess(), timeSteps)
        val joshiBermudanNpv = 
            new VanillaPricingService(payoff, bermudanExercise) !!
                          new BinomialJ4VanillaEngine(SimpleFactory.bsProcess(), timeSteps)
        val joshiAmericanNpv = 
            new VanillaPricingService(payoff, americanExercise) !!
                          new BinomialJ4VanillaEngine(SimpleFactory.bsProcess(), timeSteps)

        // Monte-Carlo methods
        timeSteps = 1;
        val americanTimeSteps = 25
        val mcSeed = 42;
        val nSamples = 32768; // 2^15
        val maxSamples = 1048576; // 2^20

        val pseudoMcEuropeanNpv = 
            new VanillaPricingService(payoff, europeanExercise) !!
                new MCPREuropeanEngine(SimpleFactory.bsProcess(),
                                       timeSteps,
                                       QuantLib.nullInt(),
                                       true, false,
                                       nSamples, 0.02, maxSamples, mcSeed)

        val pseudoMcAmericanNpv = 
            new VanillaPricingService(payoff, americanExercise) !!
                new MCPRAmericanEngine(SimpleFactory.bsProcess(),
                                       americanTimeSteps,
                                       QuantLib.nullInt(),
                                       true, false, 
                                       nSamples, 0.02, maxSamples, mcSeed)

        val quasiMcEuropeanNpv = 
            new VanillaPricingService(payoff, europeanExercise) !!
                new MCLDEuropeanEngine(SimpleFactory.bsProcess(),
                                       timeSteps,
                                       QuantLib.nullInt(),
                                       false, false,
                                       nSamples, 0.02, maxSamples, mcSeed)

        val quasiMcAmericanNpv = 
            new VanillaPricingService(payoff, americanExercise) !!
                new MCLDAmericanEngine(SimpleFactory.bsProcess(),
                                       americanTimeSteps,
                                       QuantLib.nullInt(),
                                       true, false, 
                                       nSamples, 0.02, maxSamples, mcSeed)


        // write column headings
        printf("\n%-35s %-14s %-14s %-14s\n" + "="*76+ "\n", 
               "Method", "European", "Bermudan", "American")

        val fmt = "%34s %13.9f %13.9f %13.9f\n";        
        printf(fmt, "Black-Scholes", analyticEuropeanNpv(), 
                                     Double.NaN, Double.NaN)
        printf(fmt, "Heston Semi-Analytic", analyticHestonNpv(), 
                                            Double.NaN, Double.NaN)
        printf(fmt, "Heston Finite-Difference", 
        	fdEuropeanHestonNpv(), fdBermudanHestonNpv(), fdAmericanHestonNpv())
        printf(fmt, "COS Heston Method", cosHestonNpv(), 
                                            Double.NaN, Double.NaN)
        printf(fmt, "Bates Semi-Analytic", analyticBatesNpv(), 
                                            Double.NaN, Double.NaN)
        printf(fmt, "Bates Finite-Difference", 
        	fdEuropeanBatesNpv(), fdBermudanBatesNpv(), fdAmericanBatesNpv())
        printf(fmt, "Barone-Adesi/Whaley", Double.NaN, Double.NaN,
                                           baroneAdesiWhaleyNpv());
        printf(fmt, "Bjerksund/Stensland", Double.NaN, Double.NaN,
                                           bjerksundStenslandNpv())
        printf(fmt, "Integral", integralNpv(),
                                           Double.NaN, Double.NaN)
        printf(fmt, "Finite differences", fdEuropeanNpv(),fdBermudanNpv(),
                                          fdAmericanNpv())
        printf(fmt, "Binomial Jarrow-Rudd",jarrowRuddEuropeanNpv(),
                            jarrowRuddBermudanNpv(),jarrowRuddAmericanNpv()) 
        printf(fmt, "Binomial Cox-Ross-Rubinstein",
                                        coxRossRubinsteinEuropeanNpv(),
                                        coxRossRubinsteinBermudanNpv(),    
                                        coxRossRubinsteinAmericanNpv())
        printf(fmt, "Additive equiprobabilities",additiveEqpEuropeanNpv(),
                        additiveEqpBermudanNpv(),additiveEqpAmericanNpv())
        printf(fmt, "Binomial Trigeorgis", trigeirgisEuropeanNpv(),
                            trigeirgisBermudanNpv(),trigeirgisAmericanNpv())
        printf(fmt, "Binomial Tian", tianEuropeanNpv(),
                                        tianBermudanNpv(),tianAmericanNpv())
        printf(fmt, "Binomial Leisen-Reimer", leisenReimerEuropeanNpv(),
                        leisenReimerBermudanNpv(), leisenReimerAmericanNpv())
        printf(fmt, "Binomial Joshi", joshiEuropeanNpv(), 
                                      joshiBermudanNpv(), joshiAmericanNpv())
        printf(fmt, "MC (crude)", pseudoMcEuropeanNpv(), 
                                  Double.NaN, pseudoMcAmericanNpv())
        printf(fmt, "MC (Sobol)", quasiMcEuropeanNpv(), 
                                  Double.NaN, quasiMcAmericanNpv())

        val msecs = (System.currentTimeMillis()-beginTime)
        println("Run completed in "+msecs+" ms.")
    }
}